Определение концентрации растворов с помощью интерферометра рэлея. Интерферометры и их применение Интерферометр рэлея принцип действия

Интерферометр Рэлея

Анимация

Описание

Интерферометр Рэлея представляет собой одно из наиболее чувствительных к разности фазовых набегов волн интерференционных устройств, что позволяет использовать его для точного определения показателей преломления газов при давлении, близком к атмосферному (при этом давлении соответствующий показатель преломления отличается от единицы в четвертом-пятом знаке после запятой).

Схематическое изображение конструкции интерферометра Рэлея представлено на рис. 1.

Схематическое изображение конструкции интерферометра Рэлея

Рис. 1

Пучок света от практически точечного источника S , находящегося в фокусе линзы, превращается этой линзой в параллельный пучок. Далее, за линзой, располагается диафрагма с двумя симметричными относительно главной оси системы отверстиями - вторичными источниками S 1 и S 2 , формирующими два параллельных тонких пучка. Эти пучки, затем, фокусируются второй линзой на экран, находящийся в ее фокальной плоскости. В результате возникает интерференционная картина из горизонтальных полос, как показано на рисунке. При этом в отсутствии по ходу распространения пучков между линзами дополнительных объектов с показателями преломления n 1 (кювета с исследуемым газом) и n 2 (компенсатор фазового набега с известным управляемым набегом фазы оптического излучения в нем), нулевой максимум интерференционной картины лежит на оси системы. Нулевой максимум - это максимум, соответствующий нулевой разности хода D волн, образующих интерференционную картину. При использовании широкополосного излучения (например, естественного света) он легко отличим от максимумов высших порядков m:

D =m l 0 ,

где l 0 - центральная длина волны спектра излучения.

Действительно, легко понять, что он единственный имеет исходную белую окраску, тогда как максимумы высших порядков “растянуты в спектр” из-за того, что условия максимума достигаются при разных смещениях от центра картины для разных длин волн спектра пучка.

Если теперь внести в два распространяющихся в межлинзовом пространстве пучка (т.н. плечи интерферометра) кювету длины L с исследуемым газом n 1 , и управляемую оптическую задержку n 2 (например, такую же кювету с газом, зависимость показателя преломления которого от давления известна), то пучки получат дополнительную разность хода:

D 1 =L(n 2 -n 1 ).

Тем самым нулевая полоса интерференционной картины сместится, и центр поля приобретет окраску.

Чтобы “вернуть картину на место”, необходимо уравнять показатели преломления исследуемого газа и эталонного в двух кюветах, что достигается вариацией давления последнего. В итоге, восстановив центральность нулевой “белой” полосы (а это можно сделать с большой точностью, порядка 1/40 полосы, D m Ј 1/40 ), мы получаем точные сведения о показателе преломления исследуемого газа. Реальные инструменты, выполненные по схеме интерферометра Рэлея, позволяют измерять отличия показателя преломления от единицы по формуле:

(n-1)= l 0 D m/L » 10 -8 .

Временные характеристики

Время инициации (log to от -8 до -7);

Время существования (log tc от -7 до 15);

Время деградации (log td от -8 до -7);

Время оптимального проявления (log tk от -6 до -5).

Диаграмма:

Технические реализации эффекта

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра физики

Определение концентрации растворов с помощью интерферометра рэлея

Методические указания к лабораторной работе № 12

по физике

(Раздел «Оптика»)

Ростов-на-Дону 2011

Составители: д.т.н., проф. С.И. Егорова,

к.т.н., доц. И.Н. Егоров,

к.ф.-м.н., доц. Г.Ф. Лемешко.

«Определение концентрации растворов с помощью интерферометра Рэлея»: Метод. указания. - Ростов н/Д: Издательский центр ДГТУ, 2011. - 8 с.

Печатается по решению методической комиссии факультета «Нанотехнологии и композиционные материалы»

Научный редактор проф., д.т.н. В.С. Кунаков

© Издательский центр ДГТУ, 2011

Цель работы: 1. Изучить принцип действия интерферометра Рэлея.

2. Изучить явления интерференции при помощи интерферометра Релея.

3. Определить концентрацию этилового спирта в воде.

Оборудование: Интерферометр Рэлея, кюветы с исследуемыми растворами.

Краткая теория

Интерференция – это наложение когерентных волн, при котором происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности света.

Когерентными называются волны одинаковой частоты и постоянной разности фаз. Для получения когерентных волн необходимо разделить световой луч, исходящий из одного источника.

Интерференционную картину можно получить с помощью прибора ИТР-1, в основу которого положена схема интерферометра Рэлея, в котором интерференционная картина получается от двух когерентных световых пучков, прошедших через две параллельные щели (рис.1).

Свет от источника 1 (лампочка накаливания) собирается с помощью конденсора на щели 2 , находящейся в фокальной плоскости объектива коллиматора 3 . Параллельный пучок лучей, выходящих из объектива, разделяется двумя щелями диафрагмы 4 . Эти щели можно рассматривать как два источника вторичных световых волн, которые являются когерентными.

Когерентные световые пучки проходят через объектив 6 , причём, верхняя часть пучков проходит через кюветы 5 (рис.1), а нижняя – непосредственно направляется в объектив. В результате в фокальной плоскости объектива происходит интерференция двух пар когерентных пучков. Интерференционная картина, образовавшаяся от двух щелей, представляет собой систему темных и светлых полос. Положение темной (условие минимума) или светлой (условие максимума) полосы определяется оптической разностью хода интерферирующих лучей:

- условие максимума, (1)

- условие минимума, (2)

где - оптическая разность хода, которая равна разности оптических длин путей, т.е.
, (3)

здесь
- показатели преломления,
- пути, пройденные светом,-длина волны света,
- порядок максимума или минимума.

Наблюдение ведётся через окуляр 7 (рис.1).

Интерференционная картина представлена на рис.2. Лучи, проходящие мимо кювет, образуют нижнюю интерференционную картину, а лучи, проходящие через кюветы – верхнюю. Дополнительная разность хода лучей в кюветах вызывает смещение верхней системы относительно нижней. Если заполнить кюветы газами или жидкостями с разными показателями преломления, то появится дополнительная разность хода, определяемая формулой (3).

С помощью компенсационного устройства системы полос можно совместить (рис. 3).

В данной работе кюветы одинаковой длины (). В одной из них находится дистилированная вода, а в другой – раствор этилового спирта в воде. Поэтому дополнительная разность хода лучей:

, (4)

где - длина кюветы,
- показатели преломления раствора и дистилированной воды соответственно.

Воспользовавшись выводами теории дифракции, можно утверждать, что свет от вторичных источников в опыте Юнга имеет наибольшую интенсивность в направлении геометрических лучей от первичного источника . В опыте Юнга эти лучи за экраном расходятся, но с помощью линзы, поставленной перед отверстиями (рис. 7.12), их можно свести в точку О, сопряженную относительно линзы с Тогда интенсивность интерференционной картины вблизи О увеличивается, и можно наблюдать интерференционные полосы при отверстиях находящихся значительно дальше друг от друга. Расстояние между соседними светлыми полосами по-прежнему равно и если линза дает стигматическое изображение точки то, согласно принципу равенства оптического

пути, полоса нулевого порядка будет располагаться в О. Если же линза не дает стигматического изображения, полоса нулевого порядка сместится на О на величину, зависящую от оптической разности хода от 5 до О через оба отверстия. При оптической разности хода смещение будет в раз больше расстояния между соседними светлыми полосами, где

Очевидно, что такое устройство можно использовать для количественного испытания качества линз, как это было сделано Майкельсоном . Если одно из отверстий неподвижно относительно центра линзы, то, измеряя при различных положениях другого отверстия, можно определить от клонение волнового фронта, идущего из от сферичности после прохождения линзы (волновая аберрация). Аналогично, если прозрачная пластинка толщиной I с показателем преломления помещена в пучок света, идущий от то оптическая длина пути увеличивается на и порядо интерференции в точке О изменится на величину

Измеряя можно определить разность между показателями преломления пластинки и окружающей среды. На этом основано устройство интерферометра Рэлея , применяемого для точных измерений показателей преломления газов. Схема современной модели этого прибора показана на рис. 7.13. Свет от щели коллимируется линзой и затем падает на две другие щели параллельные

Рис. 7.13. Схема интерферометра Рэлея, а - горизонтальное сечение, - вертикальное сечение.

Параллельные пучки света от и проходят через разные газовые кюветы и собираются линзой в фокальной плоскости которой образуются интерференционные полосы, параллельные щелям. Помещение газовых кювет в пучки света заставляет значительно увеличить расстояние между щелями и вследствие чего интерференционные полосы располагаются тесно, и для их наблюдения требуется большое увеличение. Ширина щели также не может быть большой, и, следовательно, яркость картины невелика. Так как увеличение требуется только в направлении, перпендикулярном к полосам, то для этой цели хорошо подходит цилиндрический окуляр в виде тонкой стеклянной палочки с длинной осью, параллельной полосам. Картина, рассматриваемая таким образом, значительно ярче, чем при использовании сферического окуляра. Применение цилиндрического окуляра имеет еще и другое важное преимущество, позволяя получить ьторую фиксированную систему полос с таким же расстоянием между полосами, как и у главной, но образованную светом от источников прошедшим ниже газовых кювет. Вторая система полос может служить шкалой для отсчета. С помощью стеклянной пластинки эту шкалу смещают по вертикали так, чтобы ее верхний край соприкасался с нижним краем главной системы. Резкая линия раздела между пими - это край пластинки наблюдаемый через линзу

Следовательно, определение смещения главной системы полос, обусловленного изменением оптических путец в кюветах целиком зависит от остроты зрения глаза, которая, вообще говоря, велика, и таким способом можно обнаружить смещения, примерно равные 1/40 порядка. Случайные смещения в оптической системе также становятся менее существенными, так как сказываются одновременно на обеих системах полос.

На практике удобнее компенсировать оптическую разность хода, а не считать полосы. Это делается следующим образом: свет, выходящий из газовых кювет, проходит через тонкие стеклянные пластинки, одна из которых неподвижна, а другая может вращаться вокруг горизонтальной оси, что позволяет плавно изменять оптическую длину пути света, выходящего из

Такой компенсатор калибруется в монохроматическом свете для того, чтобы определить величину поворота пластинки, соответствующую смещению на один порядок в главной системе полос. В этом случае система полос служит нуль-индикатором равенства оптических путей и Обычно работа с прибором происходит следующим образом: газовые кюветы откачивают, и в белом свете с помощью компенсатора примерно совмещают полосы главной системы и шкалы; затем добиваются точного совпадения пулевых порядков в монохроматическом свете, после чего одну из кювет заполняют исследуемым газом и снова, сперва в белом свете, а потом в монохроматическом совмещают, используя компенсатор, нулевые порядки. Разница между двумя установками компенсатора позволяет определить по его калибровке смещение порядка в главной системе полос, вызванное присутствием газа в кювете. Показатель преломления этого газа находят из (28), а именно:

где длина газовой кюветы. При обычных значениях и точности установки в 1/40 порядка можно обнаружить изменение около

Оптические пути от и до места наблюдения интерференционной картины проходят среды с различной дисперсией; поэтому, в отличие от простого случая, рассмотренного в нулевые порядки в свете разных длин воли, вообще говоря, не совпадают, и в белом свете отсутствует совершенно белая полоса. У наименее окрашенной полосы для некоторой средней длины волны (в видимой области спектра), которая зависит от цветовой чувствительности глаза. По аналогии с терминологией, принятой при описании линз, эта полоса называется ахроматической. Если компенсатор вводит оптическую разность хода Л, то порядок интерференции в точке О равен

Поэтому в точке О ахроматическая полоса будет тогда, когда

При такой установке компенсатора нулевой порядок картины в монохроматическом свете может не попасть в точку О, так как для их совпадения требуется, чтобы

Это несовпадение может оказаться достаточно большим, чтобы затруднить идентификации полосы нулевого порядка в монохроматическом свете, и поэтому приходится прибегать к предварительным измерениям при малом давлении или с короткой кюветой.

Заметим также, что ахроматическая полоса хорошо распознается, только если в тех точках картины, где область значений для длин волн видимою спектра достаточно мала. При наблюдении в белом свете пути интерферирующих волн в средах с одинаковой дисперсией должны быть по возможности равными.

Большую чувствительность в принципе можно получить, увеличивая I, но этому препятствуют трудности контроля температуры. По той же причине в модели прибора, предназначенного для измерения разности показателей преломления жидкостей, применяются только короткие кюветы. Кроме того, разность хода, которую можно скомпенсировать, ограничена, и поэтому при большой разнице показателей преломления в кюветах длина их должна быть пропорционально уменьшена.


Интерферометр Рэлея

ПНТЕРФЕРОМЕТР РЭЛЕЯ (интерференционный рефрактометр) - интерферометр для измерения показатели преломления, основанный па явлении дифракции света на двух параллельных щелях. Схема Интерферометра Рэлея представлена па (рис.10.) в вертикальной и горизонтальной проекциях.

Ярко освещённая щель малой ширины S служит источником света, расположенным в фокальной плоскости объектива О 1 . Параллельный пучок лучей, выходящий из О 1 , проходит диафрагму D с двумя параллельными щелями и трубки R 1 и R 2 , в которые вводятся исследуемые газы или жидкости. Трубки имеют одинаковые длины и занимают только верхнюю половину пространства между О 1 и объективом зрительной трубы О 2 . В результате интерференции света, дифрагирующего на щелях диафрагмы D, в фокальной плоскости объектива О 2 вместо изображении щели S образуются две системы интерференционных полос, схематически показанные на рис.10. Верхняя система полос образуется лучами, проходящими через трубки R 1 и R 2 , а нижняя -- лучами, идущими мимо них. Интерференционные полосы наблюдаются с помощью короткофокусного цилиндрического окуляра О 3 . В зависимости от разности показателей преломления n 1 и n 2 веществ, помещенных в R 1 и R 2 , верхняя система полос будет смещена в ту или иную сторону. Измеряя величину этого смешения, можно вычислить n 1 - n 2 . Нижняя система полос неподвижна, и от неё отсчитывают перемещения верхней системы. При освещении щели S белым светом центральные полосы обеих интерференционных картин являются ахроматическими, а полосы, расположенные справа и слева от них, окрашены. Это облегчает обнаружение центральных полос. Измерение перемещения верхней системы полос осуществляется применением компенсатора, который вводит между лучами, проходящими через R 1 и R 2 , дополнительную разность фаз до совмещения верхних и нижних систем полос. С помощью интерферометра Рэлея достигается весьма высокая точность измерения до 7- го и даже 8-го десятичного знака. Интерферометр Рэлея применяется для обнаружения малых примесей в воздухе, в воде, для анализа рудничного и печного газов и для других целей.

Интерферометр Фабри - Перо

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО -- многолучевой интерференционный спектральный прибор с двумерной дисперсией, обладающий высокой разрешающей способностью. Используется как прибор с пространственным разложением излучения в спектр и фотогр. регистрацией и как сканирующий прибор с фотоэлектрической регистрацией. Интерферометр Фабри-Перо представляет собой плоскопараллельный слой из оптически однородного прозрачного материала, ограниченный отражающими плоскостями. Наиболее широко применяемый воздушный интерферометр Фабри-Перо состоит из двух стеклянных или кварцевых пластинок, расположенных на некотором расстоянии d друг от друга (Рис.11.). На обращённые друг к другу плоскости (изготовленные с точностью до 0.01 длины волны) нанесены высокоотражающие покрытия. интерферометр Фабри-Перо располагается между коллиматорами; в фокальной плоскости входного коллиматора устанавливается освещённая диафрагма, служащая источником света для интерферометра Фабри-Перо. Плоская волна, падающая на интерферометр Фабри-Перо в результате многократных отражений от зеркал и частичною выхода после каждого отражения разбивается на большое число плоских когерентных волн, отличающихся по амплитуде и по фазе. Амплитуда когерентных воли убывает но закону геометрической прогрессии, а разность хода между каждой соседней парой когерентных воли, идущих, в данном направлении, постоянна и равна

где п -- показатель преломления среды между зеркалами (для воздуха n=1), и- угол между лучом и нормалью к зеркалам. Пройдя через объектив выходного коллиматора, когерентные волны интерферируют в его фокальной плоскости F и образуют пространственную интерференционную картину и в виде колец равного наклона (рис. 12.). Распределение интенсивности (освещённости) в интерференционной картине описывается выражением

I =ф k BTу/f 2 2 ,

где B - яркость источника, ф к -- коэффициент пропускания объективов коллиматоров. у - площадь сечения осевого параллельного пучка, f 2 - фокусное расстояние объектива выходного коллиматора, Т - функция пропускания интерферометра Фабри-Перо.

T= T макс (1+з 2 sin 2 k?) -1

Где T макс = , k = 2р/л

з = 2/(1- с), ф, с и a - соответственно коэффициент пропускания, отражения и поглощения зеркал, причем ф+ с+a=1.

Функция пропускания Т, а следовательно, и распределения интенсивности имеет осциллирующий характер с резкими максимумами интенсивности (рис. 13), положение которых определяется из условия

где т (целое число) - порядок спектра, л -- длина волны. Посредине между соседними максимумами функция Т имеет минимумы

Поскольку положение интерференционных максимумов зависит от угла и и равного ему угла ч выхода лучей из второй стеклянной пластинки, то интерференционная картина имеет форму концентрических колец (рис.12.), определяемых из условия, локализованных в области геометрического изображения входной диаграммы (рис.11).

Радиус этих колец равен, откуда следует, что при m = const имеется однозначная зависимость между r т и л и, следовательно, интерферометр Фабри-Перо производит пространственное разложение излучения в спектр. Линейное расстояние между максимумами соседних колец и ширина этих колец (рис.13.) уменьшаются с увеличением радиуса, т. е. с увеличением r т интерференционные кольца становятся уже и сгущаются. Ширина колец?r зависит также от коэффициента отражения с и уменьшается с увеличением с.

Светосила реального Интерферометра Фабри-Перо в несколько сотен раз больше светосилы дифракционного спектрометра при равной разрешающей способности, что является его преимуществом. Так как интерферометр Фабри-Перо, обладая высокой разрешающей силой, имеет очень маленькую область дисперсии, то при работе с ним необходима предварительная монохроматизация, чтобы ширина исследуемого спектра была меньше?л. Для этой цели применяют часто приборы скрещенной дисперсии, сочетая интерферометр Фабри-Перо с призменным или дифракционным спектрографом так, чтобы направления дисперсий Интерферометра Фабри-Перо и спектрографа были взаимно перпендикулярны. Иногда для увеличения области дисперсии используют систему из двух поставленных друг за другом Интерферометров Фабри-Перо с различной величиной расстояния d, так чтобы их отношение d 1 /d 2 равнялось целому числу. Тогда область дисперсии?л определяется более «тонким» Интерферометром Фабри-Перо, а разрешающая сила -- более «толстым». При установке двух одинаковых Интерферометров Фабри-Перо увеличивается разрешающая сила и повышается контраст интерференционной картины.

Интерферометры Фабри-Перо широко применяются в ультрафиолетовой, видимой и инфракрасных областях спектра при исследовании тонкой и сверхтонкой структуры спектральных линий, для исследования модовой структуры излучения лазеров и т. п. Интерферометр Фабри-Перо также используется как резонатор в лазерах.

Интерферометр Рэлея

Схема интерферометра Рэлея

Интерферо́метр Рэле́я - однопроходной двулучевой интерферометр , разделяющий свет от источника на два потока, разница фаз между которыми создаётся пропусканием света сквозь две одинаковые кюветы , заполненные разными газами . Впервые был предложен лордом Рэлеем в 1886 году. Использовался для определения показателей преломления газов.

Принципиальная схема

Свет от источника пропускается через линзу , создающую параллельный пучок и апертуры , вырезающие из него два луча (плечи интерферометра). Каждый из лучей проходит сквозь собственную кювету с газом. На выходе схемы расположена линза, сводящая оба пучка вместе для получения интерференционных полос в её фокусе .

Для измерений в одно из плеч вносится компенсатор - например, стеклянная пластинка, с помощью поворота которой можно изменять оптическую длину пути луча в плече. Если показатель преломления в одном из плеч равен n , то второй неизвестный показатель преломления равен

где - длина кюветы с газом, - длина волны источника света, - порядок интерференции (количество пересекающихся в заданной точке интерференционных полос). При типичных параметрах установки - длине кювет в один метр, длине волны в 550 нм и порядке интерференции 1/40, - можно измерить разницу показателей преломления, равную 10 −8 . Чуствительность интерферометра определяется длиной кюветы. Её максимальная длина, как правило, определяется техническими возможностями контроля за температурой, так как тепловые флуктуации будут искажать показатели преломления газов.

Литература

  • Max Born , Вольф, Эмиль (англ. Emil Wolf ) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. - 7th. - CUP Archive, 2000. - P. 299-302. - 986 p. - ISBN 9780521784498
  • P. Hariharan Basics of interferometry. - Academic Press, 2007. - P. 15. - 226 p. - ISBN 9780123735898

Wikimedia Foundation . 2010 .

Смотреть что такое "Интерферометр Рэлея" в других словарях:

    интерферометр Рэлея - Reilėjaus interferometras statusas T sritis fizika atitikmenys: angl. Rayleigh interferometer vok. Rayleighsches Interferometer, n rus. интерферометр Рэлея, m pranc. interféromètre de Rayleigh, m … Fizikos terminų žodynas

    Измерительный прибор, основанный на интерференции волн. Существуют И. для звук. волн и для эл. магн. волн (оптических и радиоволн). Оптич. И. применяются для измерения оптич. длин волн спектр. линий, показателей преломления прозрачных сред, абс.… … Физическая энциклопедия

    См. Интерферометр Рэлея. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия

    Интерферометр измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того… … Википедия

    РЭЛЕЯ ИНТЕРФЕРОМЕТР, интерферометр (см. ИНТЕРФЕРОМЕТР) для измерения показателя преломления на основе дифракции света на двух параллельных щелях … Энциклопедический словарь

    Двухлучевой интерферометр, состоящий из двух зеркал М1, М2 и двух параллельных полупрозрачных пластин Рис. 1. Схема интерферометра Рождественского.P1 P2 (рис. 1); M1, P1 и M2, Р2 устанавливаются попарно параллельно, но М1 и М2 наклонены… … Физическая энциклопедия

    Измерительный прибор, в котором используется Интерференция волн. Существуют И. для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются И.… … Большая советская энциклопедия

    - (интерференционный рефрактометр) двухлучевой интерферометр, использовавшийся для измерения малых показателей преломления газов, предложенный Жюлем Жаменом в 1856 году. Содержание 1 Устройство 2 Применение … Википедия

    - (от интерференция и... метр) прибор, в к ром явление интерференции используется для точных измерений. Для измерений показателя преломления, проверки концевых мер длины, измерений угловых размеров звёзд в астрономии, в дефектоскопии и… … Большой энциклопедический политехнический словарь

    Стретт, Джон Уильям, 3 й барон Рэлей Джон Уильям Стретт John William Strutt Дата рождения: 12 … Википедия