Ремонт светодиодных прожекторов. Схемы драйверов светодиодных прожекторов

Светодиод 10 Вт – является мощным полупроводниковым прибором. Сфера его применения, зачастую не ограничивается лампами и прожекторами. Также чип пользуется большой популярностью среди любителей смастерить устройство для освещения своими руками.

Область применения

10 W широко применяются в различных осветительных устройствах. Все сферы условно можно разделить на общее и специальное назначение. К общему назначению относится эксплуатация светодиодов в лампах, светильниках, прожекторах, а к специальному – применение для подсветки в оранжереях и . Второй вариант – это, так называемые, и не только. Фокус в том, что спектр излучения данного LED оптимальный для роста растений, как на суше, так и в воде. А кроме водорослей и рыб, освещение 10 ваттными светодиодами, благоприятно влияет на развитие кораллов, поэтому любители аквариумов являются частыми потребителями этой радиодетали. Все эти замечательные свойства проявляются в определенной комбинации цветов кристаллов. Что касается использования описываемого полупроводникового прибора для осветительных устройств общего назначения, то помимо бытовых ламп, светодиод отлично применяется для изготовления фар для автомобиля, светофоров, дорожной подсветки.

Конструкция светодиода, варианты исполнения

Светодиод COB 10 W представляет собой компактный модуль, выполненный по технологии chip-on-board. Принципиальное отличие от SMD заключается в том, что несколько кристаллов вместе размещаются на плате и покрываются общим слоем люминофора. Это значительно снижает стоимость матрицы. Состоит она из 9 кристаллов: три параллельные цепочки по три последовательно подключенных кристалла в каждой. Внешне LED 10 W могут отличаться формой токопроводящей подложки. Например, светодиод фирмы выглядит, как показано на рисунке. Подложка его имеет форму звезды и выполнена из алюминия.

Корпус модуля изготовлен из термостойкого пластика, а линза – из эпоксидной смолы. Классические LED 10 W выглядят так, как показано на схеме, но на практике габаритные размеры варьируются в зависимости от производителя.

Не забывайте, что светодиод является полярным элементом, поэтому обращайте внимание на маркировку при монтаже. Обязательным условием адекватного функционирования светодиода 10 Вт является наличие теплоотвода. Организовать его можно с помощью алюминиевого или медного радиатора. Смазывайте подложку светодиода термопроводящей пастой или термоклеем для лучшей теплоотдачи. Иногда дополнительно монтируется кулер, который обеспечивает циркуляцию воздуха для охлаждения радиаторных пластин.

На видео вы можете увидеть испытание светодиода 10Вт и рекомендации при подключении такого элемента. Вот, как должна выглядеть схема подключения светодиода 10 Вт.

Источником питания может выступать автомобильный аккумулятор, компьютерный блок питания, или специально приобретенный 12-ти вольтовый источник. Для того чтобы избежать перегрева (несмотря на радиатор) и защиты светодиода, крайне необходимо подключать его не напрямую к источнику, а через любой стабилизатор напряжения. На схеме показан интегральный стабилизатор напряжения LM-317, но можно использовать и другой с подходящими параметрами. С помощью обычной кренки и резистора вы обеспечите себя гарантированными 12 В на выходе и ток не превысит 1 А, что является залогом долговечности работы вашего устройства.

Характеристики

Параметры 10-ваттного светодиода позволяют ему пользоваться большим спросом в линейке сверхъярких LED. Напряжение питания колеблется в пределах от 9 до 12 Вольт. Угол свечения — 120° – график изображен ниже.

Номинальный прямой ток равен 1 А, пульсирующий прямой ток – до 2 А. Световой поток находится в пределах 600-1080 лм. Для сравнения, лампе накаливания 75 Вт соответствует свечение в 935 лм. Таким образом, можно ориентировочно прикинуть, насколько яркое свечение будет у данного полупроводникового прибора. Обратное напряжение составляет 50 В. , в зависимости от производителя, 30-100 тысяч часов. Рабочая температура находится в диапазоне от -30°С до 80°С. Цветовая температура светодиода на 10 Вт охватывает спектр от 2300 К (теплый белый) до 10000 К (холодный белый).

Производители

В трех частях света рассредоточены лидеры производства мощных светодиодов, таких как LED 10 W. Среди них американская компания Cree (которую мы уже упоминали и демонстрировали образец ее продукции), японская Nichia (пионера в области светодиодной техники), а также, немецкая Osram (более известная для отечественного покупателя).

Фирменные светодиодные изделия стоят дороже, чем их noname аналоги, но качество во втором случае никто не гарантирует.

Рассмотрим, с какими особенностями вы столкнетесь, решив приобрести китайские дешевые 10-ваттные светодиоды. Во-первых, если внимательно сравнивать, то 9 кристаллов матрицы сами по себе имеют меньшие размеры, чем у качественных модулей. Это, естественно, скажется на светоотдаче при их работе. Во-вторых, сильная неравномерность свечения каждого кристалла. Заметно это, правда, только при пониженном токе, но, тем не менее, такая особенность влияет на скорость деградации всего светодиодного модуля.

10 ваттные подделки из Китая

На картинке вы можете наблюдать, неравномерное свечение отдельных кристаллов модуля, и как с повышением тока она выравнивается. В-третьих, в светодиодах низкого качества соединяющие кристаллы проводники очень тонкие, и могут оборваться от неосторожного движения, чем прервут функционирование минимум одной тройки последовательных кристаллов.

Резюмируя описанное выше, хочется выделить важные для запоминания тезисы статьи. Светодиоды 10 Вт в качестве светоизлучающих источников широко применяются на практике для изготовления автоламп, фонариков, прожекторов и прочих осветительных приборов. Радиаторное охлаждение критически важно для нормальной работоспособности светодиода. Питание производится от источника 12В через драйвер (стабилизатор напряжения). Известный бренд гарантирует бесперебойное функционирование в течение всего заявленного срока, а с китайскими недорогими аналогами могут возникнуть проблемы.

Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по , рекомендую ознакомиться.

Статья по схемам светодиодных драйверов и их ремонту

Саша, здравствуйте.

В частности, по теме освещения - схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

Светодиодные модули этого прожектора выглядят так:

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Электрическая схема:

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Светодиоды для LED драйверов

Я не смог определиться со светодиодами. Они в обоих модулях одинаковые, хотя их производители разные. На светодиодах нет никаких надписей (с обратной стороны – тоже). Искал у разных продавцов по строке “Сверхяркие светодиоды для LED-прожекторов и LED-люстр”. Там продают кучу разных светодиодов, но все они, или без линз, или с линзами на 60º, 90º и 120º .

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

/ Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан:1674 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан:725 раз./

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан:906 раз./

Особая благодарность тем, кто схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Одним из современных видов светодиодных источников света для уличного освещения является светодиодный прожектор . Электрическая схема светодиодного прожектора принципиально не отличается от схемы светодиодной лампы. Основное отличие заключается в их конструкции, так как требуется обеспечить работоспособность в широком диапазоне температур в условиях осадков. Поэтому ремонт прожекторов своими руками мало чем отличается от ремонта светодиодных ламп и даже проще, так как не возникает трудностей при разборке. Для получения доступа к драйверу и светодиодам прожектора достаточно отвинтить всего несколько винтов.

Ремонт маломощного светодиодного прожектора

Попали мне в ремонт два одинаковых светодиодных прожектора типа СДО01-10 мощностью 10 Вт. При внешнем осмотре сразу была обнаружена неисправность у одного из них – частичное отслоение защитного слоя и наличие темного пятна на светоизлучающей поверхности светодиодной матрицы.

Надежда на ремонт прожектора с неисправной светодиодной матрицей сразу исчезла, так как стоимость такого светодиодного излучателя обычно превышает половину стоимости прожектора. Да и приобрести новую матрицу весьма проблематично, так как на светодиодах обычно нет маркировки и определить тип нестандартного излучателя сложно. Внешний вид второго прожектора не вызвал вопросов.

Решил упростить задачу ремонта, переставив драйвер прожектора со сгоревшей матрицей в прожектор с исправной. Но снятие задних крышек показало, что в обоих прожекторах драйверы неисправны.


В обоих драйверах перегорели защитные резисторы номиналом 1 Ом, что свидетельствовало о пробое одного из диодов диодного мостика или ключевого транзистора.


Ремонт мощного светодиодного прожектора

Еще раз пришлось столкнуться с ремонтом более мощного прожектора типа СДО01-30 мощностью 30 Вт.


Внешний вид прожектора представлен на фотографии. По габаритным размерам он несколько больше, а конструкция прожектора повторяет конструкцию выше представленной модели.


После снятия задней крышки с прожектора и осмотра внешнего вида радиоэлементов на печатной плате, деталей с подозрительным внешним видом обнаружено не было.


Осмотр печатной платы после ее снятия со стороны печатных проводников сразу выявил два перегоревших резистора, R8 (2 Ом) и R22 (1 Ом). Обычно низкоомные резисторы перегорают от большого протекающего через них тока при пробое полупроводниковых приборов или конденсаторов. Рядом с резисторами находился полевой мощный транзистор SVD4N65F, который и оказался при прозвонке неисправным. Электрической схемы прожектора в наличии не было и пришлось номиналы сгоревших резисторов узнать, вскрыв исправный прожектор такого же типа.


Неисправные резисторы и транзистор были выпаяны и дополнительно проверены на печатной плате все остальные полупроводниковые элементы. После запайки исправных резисторов и транзистора в печатную плату прожектор заработал.

Как видите, владея навыками работы с мультиметром и паяльником можно успешно ремонтировать любые светодиодные прожекторы своими руками.

Для конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Схему перерисовал и немного доработал

Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%

Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?

Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.

Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы

Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА


Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.

Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.

Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

#include

void setup() {
pinMode(3, OUTPUT);
Serial.begin(9600);
analogWrite(3,0);
}

void loop() {
for(int i=0; i< 255; i+=10){
analogWrite(3,i);
delay(500);
}
for(int i=255; i>=0; i-=10){
analogWrite(3,i);
delay(500);
}
}

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

Плюсы драйвера

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Минусы

  • Высокие выходные пульсации (устраняется добавлением конденсаторов)
  • Вход диммирования нужно распаивать
  • Мало нормальной документации. Неполный даташит
  • При работе обнаружился еще один минус — помехи на радио в ФМ диапазоне. Лечится установкой драйвера в алюминиевый корпус или корпус обклеенный фольгой или алюминиевым скотчем

Драйверы вполне годятся для тех, кто дружит с паяльником или для тех кто не дружит, но готов терпеть выходные пульсации 3-4%.

Полезные ссылки

Из цикла — коты это жидкость. Тимофей — литров 5-6)))

Мощность

Мощность драйвера должна совпадать с мощностью прожектора, точнее, матрицы в прожекторе. Не стоит ориентироваться на мощность, указанную на корпусе прожектора! Нам многократно привозили в ремонт прожектора, гордо в полкорпуса промаркированные 50W с 30-и ваттными драйвером и матрицей внутри. Установка 50-и ваттного драйвера в такое изделие ничем хорошим не кончится. Нужно обязательно читать маркировку сгоревшего драйвера.

Размеры

Драйвер должен физически поместиться внутрь светодиодного прожектора. И ещё нужно уложить провода.

У нас на сайте указаны точные размеры драйверов.

Значение выходного тока драйвера

На корпусе драйвера всегда указывается значение выходного тока. Этот тот ток, который драйвер будет подавать на матрицу. Это значение варьируется, примерно, от 300мА до 3000мА и должно совпадать с током питания матрицы. Отклонения более 5% недопустимы .

Диапазон выходных напряжений

Диапазон выходных напряжений драйвера - это два значения напряжений, в пределах которых драйвер пытается стабилизировать ток.

Числа могут варьироваться от 20 до 150 вольт.

Этот диапазон должен совпадать с соответствующей характеристикой матрицы, или, если она неизвестна, диапазоном выходных напряжений сгоревшего драйвера.

Этот параметр не обязан так точно совпадать, как значение тока, но примерное совпадение должно иметь место.

Входное напряжение - 220 вольт

Мы производим разные драйверы для светодиодных прожекторов, не только для 220 вольт. Поэтому при покупке драйвера убедитесь, что Вы драйвер на нужное Вам входное напряжение - все драйверы, представленные в этом разделе, предназначены для сетей 220, 127 и 110 вольт.