Коррозия котлов и способы ее предотвращения. Коррозия и эрозия в котлах среднего и низкого давления со стороны топки

Введение

Корро́зия (от лат. corrosio - разъедание) - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это - разрушение любого материала - будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

4Fe + 2Н 2 О + ЗО 2 = 2(Fe 2 O 3 Н 2 О)

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии. Главная классификация производится по механизму протекания процесса. Различаются два вида: химическую коррозию и электрохимическую коррозию. В данном реферате подробно рассматривается химическая коррозия на примере судовых котельных установках малых и больших мощностей.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

1) -Газовая коррозия

2) -Коррозия в неэлектролитах

3) -Атмосферная коррозия

4) -Коррозия в электролитах

5) -Подземная коррозия

6) -Биокоррозия

7) -Коррозия блуждающим током.

По условиям протеканию коррозионного процесса различаются следущие виды:

1) -Контактная коррозия

2) -Щелевая коррозия

3) -Коррозия при неполном погружении

4) -Коррозия при полном погружении

5) -Коррозия при переменном погружении

6) -Коррозия при трении

7) -Коррозия под напряжением.

По характеру разрушения:

Сплошная коррозия, охватывающая всю поверхность:

1) -равномерная;

2) -неравномерная;

3) -избирательная.

Локальная(местная) коррозия, охватывающая отдельные участки:

1) -пятнами;

2) -язвенная;

3) -точечная(или питтинг);

4) -сквозная;

5) -межкристаллитная.

1. Химическая коррозия

Представим себе металл в процессе производства металлического проката на металлургическом заводе: по клетям прокатного стана движется раскаленная масса. Во все стороны от нее разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины – продукта химической коррозии, возникающего в результате взаимодействия металла с кислородом воздуха. Такой процесс самопроизвольного разрушения металла из-за непосредственного взаимодействия частиц окислителя и окисляемого металла, называется химической коррозией.

Химическая коррозия - взаимодействие поверхности металла с (коррозионно-активной) средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

4Fe + 3O 2 → 2Fe 2 O 3

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При химической коррозии окисление металла и восстановление окислительного компонента коррозионной среды происходят одновременно. Такая коррозия наблюдается при действии на металлы сухих газов (воздуха, продуктов горения топлива) и жидких не электролитов (нефти, бензина и т. д.) и представляет собой гетерогенную химическую реакцию.

Процесс химической коррозии происходит следующим образом. Окислительный компонент внешней среды, отнимая у металла валентные электроны, одновременно вступает с ним в химическое соединение, образуя на поверхности металла пленку (продукт коррозии). Дальнейшее образование пленки происходит за счет взаимной двусторонней диффузии через пленку агрессивной среды к металлу и атомов металла по направлению к внешней среде и их взаимодействия. При этом если образующаяся пленка обладает защитными свойствами, т. е. препятствует диффузии атомов, то коррозия протекает с самоторможением во времени. Такая пленка образуется на меди при температуре нагрева 100 °С, на никеле - при 650, на железе - при 400 °С. Нагрев стальных изделий выше 600 °С приводит к образованию на их поверхности рыхлой пленки. С повышением температуры процесс окисления идет с ускорением.

Наиболее распространенным видом химической коррозии является коррозия металлов в газах при высокой температуре - газовая коррозия. Примерами такой коррозии являются окисление арматуры печей, деталей двигателей внутреннего сгорания, колосников, деталей керосиновых ламп и окисление при высокотемпературной обработке металлов (ковке, прокате, штамповке). На поверхности металлоизделий возможно образование и других продуктов коррозии. Например, при действии сернистых соединений на железе образуются сернистые соединения, на серебре при действии паров йода - йодистое серебро и т. д. Однако чаще всего на поверхности металлов образуется слой оксидных соединений.

Большое влияние на скорость химической коррозии оказывает температура. С повышением температуры скорость газовой коррозии увеличивается. Состав газовой среды оказывает специфическое влияние на скорость коррозии различных металлов. Так, никель устойчив в среде кислорода, углекислого газа, но сильно корродирует в атмосфере сернистого газа. Медь подвержена коррозии в атмосфере кислорода, но устойчива в атмосфере сернистого газа. Хром обладает коррозионной стойкостью во всех трех газовых средах.

Для защиты от газовой коррозии используют жаростойкое легирование хромом, алюминием и кремнием, создание защитных атмосфер и защитных покрытий алюминием, хромом, кремнием и жаростойкими эмалями.

2. Химическая коррозия в судовых паровых котлах.

Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, - двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

2Ме(т) + O 2 (г) 2МеО(т); МеО(т) [МеО] (р-р)

В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга-Бэдвордса). Коэффициент a (фактор Пиллинга - Бэдвордса) у разных металлов имеет разные значения. Металлы, у которых a <1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

Сплошные и устойчивые оксидные слои образуются при a = 1,2-1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.

Фактор Пиллинга - Бэдвордса дает очень приближенную оценку, так как состав оксидных слоев имеет большую широту области гомогенности, что отражается и на плотности оксида. Так, например, для хрома a = 2,02 (по чистым фазам), но пленка оксида, образующегося на нем, весьма устойчива к действию окружающей среды. Толщина оксидной пленки на поверхности металла меняется в зависимости от времени.

Химическая коррозия, вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.



Владельцы патента RU 2503747:

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации.

УРОВЕНЬ ТЕХНИКИ

Эксплуатация паровых котлов связана с одновременным воздействием высоких температур, давления, механических напряжений и агрессивной среды, которой является котловая вода. Котловая вода и металл поверхностей нагрева котла представляют собой отдельные фазы сложной системы, которая образуется при их контакте. Итогом взаимодействия этих фаз являются поверхностные процессы, возникающие на границе их раздела. В результате этого в металле поверхностей нагрева возникают явления коррозии и образования накипи, что приводит к изменению структуры и механических свойств металла, и что способствует развитию различных повреждений. Поскольку теплопроводность накипи в пятьдесят раз ниже, чем у железа нагревательных труб, то имеют место потери тепловой энергии при теплопередаче - при толщине накипи 1 мм от 7 до 12%, а при 3 мм - 25%. Сильное образование накипи в системе парового котла непрерывного действия часто приводит к остановке производства на несколько дней в году для удаления накипи.

Качество питательной и, следовательно, котловой воды определяется присутствием примесей, которые могут вызывать различные виды коррозии металла внутренних поверхностей нагрева, образования первичной накипи на них, а также шлама, как источника образования вторичной накипи. Кроме того, качество котловой воды зависит и от свойств веществ, образующихся в результате поверхностных явлений при транспортировке воды, и конденсата по трубопроводам, в процессах водообработки. Удаление примесей из питательной воды является одним из способов предотвращения образования накипи и коррозии и осуществляется методами предварительной (докотловой) обработки воды, которые направлены на максимальное удаление примесей, находящихся в исходной воде. Однако применяемые методы не позволяют полностью исключить содержание примесей в воде, что связано не только с трудностями технического характера, но и экономической целесообразностью применения методов докотловой обработки воды. Кроме того, поскольку водоподготовка представляет сложную техническую систему, она является избыточной для котлов малой и средней производительности.

Известные методы удаления уже образовавшихся отложений используют в основном механические и химические способы очистки. Недостатком этих способов является то, что они не могут производиться в ходе эксплуатации котлов. Кроме того, способы химической очистки часто требуют использования дорогостоящих химических веществ.

Известны также способы предотвращения образования накипи и коррозии, осуществляемые в процессе работы котлов.

В патенте US 1877389 предложен способ удаления накипи и предотвращения ее образования в водогрейных и паровых котлах. В этом способе поверхность котла представляет собой катод, а анод размещен внутри трубопровода. Способ заключается в пропускании постоянного или переменного тока через систему. Авторы отмечают, что механизм действия способа заключается в том, что под действием электрического тока на поверхности котла образуются пузырьки газа, которые приводят к отслоению существующей накипи и препятствуют образованию новой. Недостатком указанного способа является необходимость постоянно поддерживать протекание электрического тока в системе.

В патенте US 5667677 предложен способ обработки жидкости, в частности воды, в трубопроводе с целью замедления образования накипи. Указанный способ основан на создании в трубах электромагнитного поля, которое отталкивает растворенные в воде ионы кальция, магния от стенок труб и оборудования, не давая им кристаллизоваться в виде накипи, что позволяет эксплуатировать котлы, бойлеры, теплообменники, системы охлаждения на жесткой воде. Недостатком указанного способа является дороговизна и сложность используемого оборудования.

В заявке WO 2004016833 предложен способ уменьшения образования накипи на металлической поверхности, подвергающейся воздействию пересыщенного щелочного водного раствора, из которого способна образовываться накипь после периода воздействия, включающий приложение катодного потенциала к указанной поверхности.

Указанный способ может использоваться в различных технологических процессах, в которых металл находится в контакте с водным раствором, в частности, в теплообменниках. Недостатком указанного способа является то, что он не обеспечивает защиту металлической поверхности от коррозии после снятия катодного потенциала.

Таким образом, в настоящее время существует потребность в разработке улучшенного способа предотвращения образования накипи нагревательных труб, водогрейных и паровых котлов, который был бы экономичным и высокоэффективным и обеспечивал антикоррозионную защиту поверхности в течение длительного промежутка времени после воздействия.

В настоящем изобретении указанная задача решена с помощью способа, согласно которому на металлической поверхности создается токоотводящий электрический потенциал, достаточный для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является обеспечение улучшенного способа предотвращения образования накипи нагревательных труб водогрейных и паровых котлов.

Другой задачей настоящего изобретения является обеспечение возможности исключения или значительного уменьшения необходимости удаления накипи в процессе эксплуатации водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является исключение необходимости использования расходных реагентов для предотвращения образования накипи и коррозии нагревательных труб водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является обеспечение возможности начала работы по предотвращению образования накипи и коррозии нагревательных труб водогрейных и паровых котлов на загрязненных трубах котла.

Настоящее изобретение относится к способу предотвращения образования накипи и коррозии на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь. Указанный способ заключается в приложении к указанной металлической поверхности токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

Согласно некоторым частным вариантам реализации заявленного способа токоотводящий потенциал устанавливают в пределах 61-150 В. Согласно некоторым частным вариантам реализации заявленного способа вышеуказанный железосодержащий сплав представляет собой сталь. В некоторых вариантах реализации металлическая поверхность представляет собой внутреннюю поверхность нагревательных труб водогрейного или парового котла.

Раскрытый в данном описании способ имеет следующие преимущества. Одним преимуществом способа является уменьшенное образование накипи. Другим преимуществом настоящего изобретения является возможность использования однажды закупленного работающего электрофизического аппарата без необходимости использования расходных синтетических реагентов. Еще одним преимуществом является возможность начала работы на загрязненных трубках котла.

Техническим результатом настоящего изобретения, таким образом, является повышение эффективности работы водогрейных и паровых котлов, повышение производительности, увеличение эффективности теплопередачи, снижение расходов топлива на нагрев котла, экономия энергии и пр.

Другие технические результаты и преимущества настоящего изобретения включают обеспечение возможности послойного разрушения и удаления уже образовавшейся накипи, а также предотвращения ее нового образования.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 показан характер распределения отложений на внутренних поверхностях котла в результате применения способа согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Способ согласно настоящему изобретению заключается в приложении к металлической поверхности, подверженной образованию накипи, токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов, образующих накипь, к металлической поверхности.

Термин «токоотводящий электрический потенциал» в том смысле, в каком он используется в данной заявке, означает переменный потенциал, нейтрализующий двойной электрический слой на границе металла и пароводяной среды, содержащей соли, приводящие к образованию накипи.

Как известно специалисту в данной области техники, носителями электрического заряда в металле, медленными по сравнению с основными носителями заряда -электронами, являются дислокации его кристаллической структуры, которые несут на себе электрический заряд и образуют дислокационные токи. Выходя на поверхность нагревательных труб котла, эти токи входят в состав двойного электрического слоя при образовании накипи. Токоотводящий, электрический, пульсирующий (то есть переменный) потенциал инициирует отведение электрического заряда дислокаций с поверхности металла на землю. В этом отношении он является токоотводящим дислокационные токи. В результате действия этого токоотводящего электрического потенциала двойной электрический слой разрушается, и накипь постепенно распадается и переходит в котельную воду в виде шлама, который удаляется из котла при периодических его продувках.

Таким образом, термин «токоотводящий потенциал» понятен для специалиста в данной области техники и, кроме того, известен из уровня техники (см., например, патент RU 2128804 С1).

В качестве устройства для создания токоотводящего электрического потенциала может, например, быть использовано устройство, описанное в RU 2100492 С1, которое включает в себя конвертер с частотным преобразователем и регулятором пульсирующего потенциала, а также регулятор формы импульсов. Подробное описание этого устройства дано в RU 2100492 С1. Также может быть использовано любое другое аналогичное устройство, как будет понятно специалисту в данной области техники.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен к любой части металлической поверхности, удаленной от основания котла. Место приложения определяется удобством и/или эффективностью применения заявленного способа. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании, и используя стандартные методики испытаний, сможет определить оптимальное место приложения токоотводящего электрического потенциала.

В некоторых вариантах реализации настоящего изобретения токоотводящий электрический потенциал является переменным.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен в течение различных периодов времени. Время приложения потенциала определяется характером и степенью загрязненности металлической поверхности, составом используемой воды, температурным режимом и особенностями работы теплотехнического устройства и другими факторами, известными специалистам в данной обрасти техники. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании и используя стандартные методики испытаний, сможет определить оптимальное время приложения токоотводящего электрического потенциала, исходя из поставленных целей, условий и состояния теплотехнического устройства.

Величина токоотводящего потенциала, требуемая для нейтрализации электростатической составляющей силы адгезии, может быть определена специалистом в области коллоидной химии на основании сведений известных из уровня техники, например из книги Дерягин Б.В., Чураев Н.В., Муллер В.М. «Поверхностные силы», Москва, "Наука", 1985. Согласно некоторым вариантам реализации величина токоотводящего электрического потенциала находится в диапазоне от 10 В до 200 В, более предпочтительно от 60 В до 150 В, еще более предпочтительно от 61 В до 150 В. Значения токоотводящего электрического потенциала в диапазоне от 61 В до 150 В приводят к разряжению двойного электрического слоя, являющегося основой электростатической составляющей сил адгезии в накипи и, как следствие, разрушению накипи. Значения токоотводящего потенциала ниже 61 В являются недостаточными для разрушения накипи, а при значениях токоотводящего потенциала выше 150 В вероятно начало нежелательного электроэрозионного разрушения металла нагревательных трубок.

Металлическая поверхность, к которой может быть применен способ согласно настоящему изобретению, может быть частью следующих теплотехнических устройств: нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации. Данный список является иллюстративным и не ограничивает список устройств, к которым может быть применен способ согласно настоящему изобретению.

В некоторых вариантах реализации железосодержащий сплав, из которого выполнена металлическая поверхность, к которой может быть применен способ согласно к настоящему изобретению, может представляет собой сталь или другой железосодержащий материал, такой как чугун, ковар, фехраль, трансформаторную сталь, альсифер, магнико, альнико, хромистую сталь, инвар и др. Данный список является иллюстративным и не ограничивает список железосодержащих сплавов, к которым может быть применен способ согласно настоящему изобретению. Специалист в данной области техники на основании сведений, известных из уровня техники, сможет такие железосодержащие сплавы, которые могут быть использованы согласно настоящему изобретению.

Водная среда, из которой способна образовываться накипь, согласно некоторым вариантам реализации настоящего изобретения, представляет собой водопроводную воду. Водная среда также может представлять собой воду, содержащую растворенные соединения металлов. Растворенные соединения металлов могут представлять собой соединения железа и/или щелочно-земельных металлов. Водная среда также может представлять собой водную суспензию коллоидных частиц соединений железа и/или щелочно-земельных металлов.

Способ согласно настоящему изобретению удаляет ранее образовавшиеся отложения и служит безреагентным средством очистки внутренних поверхностей в ходе эксплуатации теплотехнического устройства, обеспечивая в дальнейшем безнакипный режим его работы. При этом размеры зоны, в пределах которой достигается предотвращение образования накипи и коррозии, существенно превышает размеры зоны эффективного разрушения накипи.

Способ согласно настоящему изобретению имеет следующие преимущества:

Не требует применения реагентов, т.е. экологически безопасен;

Прост в осуществлении, не требует специальных устройств;

Позволяет повысить коэффициент теплопередачи и повысить эффективность работы котлов, что существенно сказывается на экономических показателях его работы;

Может использоваться как дополнение к применяемым методам докотловой обработки воды, так и отдельно;

Позволяет отказаться от процессов умягчения и деаэрации воды, что во многом упрощает технологическую схему котельных и дает возможность значительно снизить затраты при строительстве и эксплуатации.

Возможными объектами способа могут быть водогрейные котлы, котлы-утилизаторы, закрытые системы теплоснабжения, установки по термическому опреснению морской воды, паропреобразовательные установки и пр.

Отсутствие коррозионных разрушений, накипеобразования на внутренних поверхностях открывает возможность для разработки принципиально новых конструктивных и компоновочных решений паровых котлов малой и средней мощности. Это позволит, за счет интенсификации тепловых процессов, добиться существенного уменьшения массы и габаритов паровых котлов. Обеспечить заданный температурный уровень поверхностей нагрева и, следовательно, уменьшить расход топлива, объем дымовых газов и сократить их выбросы в атмосферу.

ПРИМЕР РЕАЛИЗАЦИИ

Способ, заявленный в настоящем изобретении, был испытан на котельных заводах «Адмиралтейские верфи» и «Красный химик». Было показано, что способ согласно настоящему изобретению эффективно очищает внутренние поверхности котлоагрегатов от отложений. В ходе этих работ была получена экономия условного топлива 3-10%, при этом разброс значений экономии связан с различной степенью загрязненности внутренних поверхностей котлоагрегатов. Целью работы являлась оценка эффективности заявленного способа для обеспечения безреагентного, безнакипного режима работы паровых котлоагрегатов средней мощности в условиях качественной водоподготовки, соблюдения водно-химического режима и высокого профессионального уровня эксплуатации оборудования.

Испытание способа, заявленного в настоящем изобретении, проводилось на паровом котлоагрегате №3 ДКВр 20/13 4-ой Красносельской котельной Юго-Западного филиала ГУП «ТЭК СПб». Эксплуатация котлоагрегата проводилась в строгом соответствии с требованиями нормативных документов. На котле установлены все необходимые средства контроля параметров его работы (давления и расхода вырабатываемого пара, температуры и расхода питательной воды, давления дутьевого воздуха и топлива на горелках, разряжения в основных сечениях газового тракта котлоагрегата). Паропроизводительность котла поддерживалась на уровне 18 т/час, давление пара в барабане котла - 8,1…8,3 кг/см 2 . Экономайзер работал в теплофикационном режиме. В качестве исходной воды использовалась вода городского водопровода, которая соответствовала требованиям ГОСТ 2874-82 «Вода питьевая». Необходимо отметить, что количество соединений железа на вводе в указанную котельную, как правило, превышает нормативные требования (0,3 мг/л) и составляет 0,3-0,5 мг/л, что приводит к интенсивному зарастанию внутренних поверхностей железистыми соединениями.

Оценка эффективности способа производилась по состоянию внутренних поверхностей котлоагрегата.

Оценка влияния способа согласно настоящему изобретению на состояние внутренних поверхностей нагрева котлоагрегата.

До начала испытаний был произведен внутренний осмотр котлоагрегата и зафиксировано исходное состояние внутренних поверхностей. Предварительный осмотр котла был произведен в начале отопительного сезона, через месяц после его химической очистки. В результате осмотра выявлено: на поверхности барабанов сплошные твердые отложения темно-коричневого цвета, обладающие парамагнитными свойствами и состоящие, предположительно, из окислов железа. Толщина отложений составляла до 0,4 мм визуально. В видимой части кипятильных труб, преимущественно на стороне обращенной к топке, обнаружены не сплошные твердые отложения (до пяти пятен на 100 мм длины трубы с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

Устройство для создания токоотводящего потенциала, описанное в RU 2100492 С1, было присоединено в точке (1) к лючку (2) верхнего барабана с тыльной стороны котла (см. Фиг.1). Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности (3) верхнего и нижнего барабанов в пределах 2-2,5 метров (зона (4)) от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала (1)). На удалении 2,5-3,0 м (зона (5)) от лючков отложения (6) сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту, (на удалении 3,0-3,5 м от лючков) начинаются сплошные отложения (7) до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился. Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности верхнего и нижнего барабанов в пределах 2-2,5 метров от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала). На удалении 2,5-3,0 м от лючков отложения сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту (на удалении 3,0-3,5 м от лючков), начинаются сплошные отложения до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился.

В видимой части кипятильных труб, в пределах 3,5-4,0 м от лючков барабанов, наблюдалось практически полное отсутствие отложений. Далее, по мере продвижения к фронту, обнаружены не сплошные твердые отложения (до пяти пятен на 100 п.мм с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

В результате этого этапа испытаний был сделан вывод о том, что способ согласно настоящему изобретению без применения каких-либо реагентов позволяет эффективно разрушать ранее образовавшиеся отложения и обеспечивает безнакипный режим работы котлоагрегата.

На следующем этапе испытаний устройство для создания токоотводящего потенциала было присоединено в точке «В» и испытания продолжались в течение еще 30-45 суток.

Очередное вскрытие котлоагрегата было произведено после 3,5 месяцев непрерывной эксплуатации устройства.

Осмотр котлоагрегата показал, что оставшиеся ранее отложения полностью разрушены и лишь в незначительном количестве сохранились на нижних участках кипятильных труб.

Это позволило сделать следующие выводы:

Размеры зоны, в пределах которой обеспечивается безнакипный режим работы котлоагрегата, существенно превышают размеры зоны эффективного разрушения отложений, что позволяет последующим переносом точки подключения токоотводящего потенциала произвести очистку всей внутренней поверхности котлоагрегата и далее поддерживать безнакипный режим его работы;

Разрушение ранее образовавшихся отложений и предотвращение образования новых обеспечивается различными по характеру процессами.

По результатам осмотра было принято решение продолжить испытания до конца отопительного периода с целью окончательной очистки барабанов и кипятильных труб и выяснения надежности обеспечения безнакипного режима работы котла. Очередное вскрытие котлоагрегата было произведено через 210 суток.

Результаты внутреннего осмотра котла показали, что процесс очистки внутренних поверхностей котла в пределах верхнего и нижнего барабанов и кипятильных труб завершился практически полным удалением отложений. На всей поверхности металла образовалось тонкое плотное покрытие, имеющее черный цвет с синей побежалостью, толщина которого даже в увлажненном состоянии (практически сразу после вскрытия котла) не превышала 0,1 мм визуально.

Одновременно подтвердилась надежность обеспечения безнакипного режима работы котлоагрегата при применении способа настоящего изобретения.

Защитное действие магнетитовой пленки сохранялось до 2-х месяцев после отсоединения устройства, что вполне достаточно для обеспечения консервации котлоагрегата сухим способом при переводе его в резерв или на ремонт.

Хотя настоящее изобретение было описано в отношении различных конкретных примеров и вариантов реализации изобретения, следует понимать, что это изобретение не ограничено ими и что оно может быть реализовано на практике в рамках объема приведенной ниже формулы изобретения

1. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включающий приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь.

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи и коррозии нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе эксплуатации. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включает приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь. Технический результат - повышение эффективности и производительности работы водогрейных и паровых котлов, увеличение эффективности теплопередачи, обеспечение послойного разрушения и удаления образовавшейся накипи, а также предотвращение ее нового образования. 2 з.п. ф-лы, 1 пр., 1 ил.

Что такое Гидро-Икс:

Гидро-Икс (Hydro-X) называют изобретен­ный в Дании 70 лет назад метод и раствор, обес­печивающие необходимую коррекционную обра­ботку воды для систем отопления и котлов как водогрейных, так и паровых с низким давлением пара (до 40 атм). При использовании метода Гид­ро-Икс в циркулирующую воду добавляется толь­ко один раствор, поставляемый к потребителю в пластиковых канистрах или бочках в уже готовом для использования виде. Это позволяет не иметь на предприятиях специальных складов для хими­ческих реагентов, цеха для приготовления необ­ходимых растворов и т. п.

Использование Гидро-Икс обеспечивает поддержание необходимой величины рН, очистку воды от кислорода и свободной углекислоты, пре­дотвращение появления накипи, а при ее наличии отмывку поверхностей, а также предохранение от коррозии.

Гидро-Икс представляет собой прозрачную желтовато-коричневую жидкость, однородную, сильно щелочную, с удельным весом около 1,19 г/см при 20 °С. Ее состав стабилен и даже при длительном хранении не имеет место разделение жидкости или выпадение осадка, так что нет нуж­ды в перемешивании перед употреблением. Жид­кость не огнеопасна.

Достоинства метода Гидро-Икс – про­стота и эффективность водоподготовки.

При работе водонагревательных систем, включающих теплообменники, водогрейные или паровые котлы, как правило, производится их подпитка добавочной водой. Для предотвращения появления накипи необходимо осуществлять водоподготовку с целью уменьшения содержания шлама и солей в котловой воде. Водоподготовка может быть осуществлена, например, за счет ис­пользования умягчающих фильтров, применения обессоливания, обратного осмоса и др. Даже по­сле такой обработки остаются проблемы, связан­ные с возможным протеканием коррозии. При до­бавке в воду каустической соды, тринатрийфосфата и т. п., также остается проблема коррозии, а для паровых котлов и загрязнение пара.

Достаточно простым методом, предотвра­щающим появление накипи и коррозию, является метод Гидро-Икс, согласно которому добавляется в котловую воду небольшое количество уже при­готовленного раствора, содержащего 8 органиче­ских и неорганических компонентов. Достоинства метода заключаются в следующем:

– раствор поступает к потребителю в уже готовом для использования виде;

– раствор в небольших количествах вводит­ся в воду либо вручную, либо с помощью насоса-дозатора;

– при использовании Гидро-Икс нет необхо­димости применять другие химические вещества;

– в котловую воду подается примерно в 10 раз меньше активных веществ, чем при примене­нии традиционных методов обработки воды;

Гидро-Икс не содержит токсичных компо­нентов. Кроме гидроксида натрия NaOH и тринатрийфосфата Na3PO4 все остальные вещества из­влечены из нетоксичных растений;

– при использовании в паровых котлах и ис­парителях обеспечивается чистый пар и предот­вращается возможность вспенивания.

Состав Гидро-Икс.

Раствор включает восемь различных веществ как органических, так и неорганических. Механизм действия Гидро-Икс носит комплексный физико-химический характер.

Направление воздействия каждой состав­ляющей примерно следующее.

Гидроксид натрия NaOH в количестве 225 г/л уменьшает жесткость воды и регулирует зна­чение рН, предохраняет слой магнетита; тринатрийфосфат Na3PO4 в количестве 2,25 г/л – пре­дотвращает образование накипи и защищает по­верхность из железа. Все шесть органических соеди­нений в сумме не превышают 50 г/л и включают лигнин, танин, крахмал, гликоль, альгинат и маннуронат натрия. Общее количество базовых ве­ществ NaOH и Na3PO4 при обработке воды Гидро-Икс очень мало, примерно в десять раз меньше, чем используют при традиционной обработке, согласно принципу стехиометрии.

Влияние компонентов Гидро-Икс скорее физическое, чем химическое.

Органические добавки служат следующим целям.

Альгинат и маннуронат натрия используют­ся вместе с некоторыми катализаторами и спо­собствуют осаждению солей кальция и магния. Танины поглощают кислород и создают защитный от коррозии слой железа. Лигнин действует по­добно танину, а также способствует удалению имеющейся накипи. Крахмал формирует шлам, а гликоль препятствует вспениванию и уносу капель влаги. Неорганические соединения поддерживают необходимую для эффективного действия орга­нических веществ слабо щелочную среду, служат индикатором концентрации Гидро-Икс.

Принцип действия Гидро-Икс.

Решающую роль в действии Гидро-Икс ока­зывают органические составляющие. Хотя они присутствуют в минимальных количествах, за счет глубокого диспергирования их активная реакцион­ная поверхность достаточно велика. Молекуляр­ный вес органических составляющих Гидро-Икс значителен, что обеспечивает физический эф­фект притягивания молекул загрязнителей воды. Этот этап водоподготовки протекает без химиче­ских реакций. Поглощение молекул загрязнителей нейтрально. Это позволяет собрать все такие мо­лекулы, как создающие жесткость, так и соли же­леза, хлориды, соли кремниевой кислоты и др. Все загрязнители воды осаждаются в шламе, ко­торый подвижен, аморфен и не слипается. Это предотвращает возможность образования накипи на поверхностях нагрева, что является сущест­венным достоинством метода Гидро-Икс.

Нейтральные молекулы Гидро-Икс погло­щают как положительные, так и отрицательные ионы (анионы и катионы), которые в свою очередь взаимно нейтрализуются. Нейтрализация ионов непосредственно влияет на уменьшение электро­химической коррозии, поскольку этот вид коррозии связан с различным электрическим потенциалом.

Гидро-Икс эффективен против коррозионно опасных газов – кислорода и свободной углекислоты. Концентрация Гидро-Икс в 10 ррт вполне достаточна, чтобы предотвратить этот вид корро­зии независимо от температуры среды.

Каустическая сода может привести к появ­лению каустической хрупкости. Применение Гид­ро-Икс уменьшает количество свободных гидроксидов, значительно снижая риск каустической хрупкости стали.

Без остановки системы для промывки процесс Гидро-Икс позволяет удалить старые су­ществующие накипи. Это происходит благодаря наличию молекул лигнина. Эти молекулы прони­кают в поры котловой накипи и разрушают ее. Хо­тя все же следует отметить, что, если котел силь­но загрязнен, экономически целесообразнее про­вести химическую промывку, а затем уже для предотвращения накипи использовать Гидро-Икс, что уменьшит его расход.

Образовавшийся шлам собирается в шламонакопителях и удаляется из них путем перио­дических продувок. В качестве шламонакопителей могут использоваться фильтры (грязевики), через которые пропускается часть возвращаемой в ко­тел воды.

Важно, чтобы образовавшийся под дейст­вием Гидро-Икс шлам по возможности удалялся ежедневными продувками котла. Величина про­дувки зависит от жесткости воды и типа предпри­ятия. В начальный период, когда происходит очи­стка поверхностей от уже имеющегося шлама и в воде находится значительное содержание загряз­няющих веществ, продувка должна быть больше. Продувка проводится полным открытием проду­вочного клапана на 15-20 секунд ежедневно, а при большой подпитке сырой воды 3-4 раза в день.

Гидро-Икс может применяться в отопитель­ных системах, в системах централизованного теп­лоснабжения, для паровых котлов невысокого давления (до 3,9 МПа). Одновременно с Гидро-Икс никакие другие реагенты не должны быть ис­пользованы, кроме сульфита натрия и соды. Само собой разумеется, что реагенты для добавочной воды не относятся к этой категории.

В первые несколько месяцев эксплуатации расход реагента следует несколько увеличить, с целью устранения существующей в системе наки­пи. Если есть опасение, что пароперегреватель котла загрязнен отложениями солей, его следует очистить другими методами.

При наличии внешней системы водоподготовки необходимо выбрать оптимальный режим эксплуатации Гидро-Икс, что позволит обеспе­чить общую экономию.

Передозировка Гидро-Икс не сказывается отрицательно ни на надежности работы котла, ни на качестве пара для паровых котлов и влечет лишь увеличение расхода самого реагента.

Паровые котлы

В качестве добавочной воды используется сырая вода.

Постоянная дозировка: 0,2 л Гидро-Икс на каждый метр кубический добавочной воды и 0,04 л Гидро-Икс на каждый метр кубический конденсата.

В качестве добавочной воды умягченная вода.

Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды в котле.

Постоянная дозировка: 0,04 л Гидро-Икс на каждый метр кубический добавочной воды и конденсата.

Дозировка для очистки котла от накипи: Гидро-Икс дозируется в количестве на 50 % больше посто­янной дозы.

Системы теплоснабжения

В качестве подпиточной воды – сырая вода.

Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды.

Постоянная дозировка: 1 л Гидро-Икс на каждый метр кубический подпиточной воды.

В качестве подпиточной воды – умягченная вода.

Начальная дозировка: 0,5 л Гидро-Икс на каждый метр кубический воды.

Постоянная дозировка: 0,5 л Гидро-Икс на каждый метр кубический подпиточной воды.

На практике дополнительная дозировка основыва­ется на результатах анализов величины рН и жесткости.

Измерение и контроль

Нормальная дозировка Гидро-Икс состав­ляет в сутки примерно 200-400 мл на тонну доба­вочной воды при средней жесткости 350 мкгэкв/дм3 в расчете на СаСО3, плюс 40 мл на тонну обратной воды. Это, разумеется, ориентировочные цифры, а более точно дозирование может быть установ­лено контролем за качеством воды. Как уже отме­чалось, передозировка не нанесет никакого вреда, но правильная дозировка позволит экономить средства. Для нормальной эксплуатации прово­дится контроль жесткости (в расчете на СаСО3), суммарной концентрации ионогенных примесей, удельной электропроводности, каустической ще­лочности, показателя концентрации водородных ионов (рН) воды. Благодаря простоте и большому диапазону надежности Гидро-Икс может приме­няться как ручным дозированием, так и в автома­тическом режиме. При желании потребитель мо­жет заказать систему контроля и компьютерного управления процессом.

Наиболее активно коррозия экранных труб проявляется в местах концентрирования примесей теплоносителя. Сюда относятся участки экранных труб с высокими тепловыми нагрузками, где происходит глубокое упаривание котловой воды (особенно при наличии на испарительной поверхности пористых малотеплопроводных отложений). Поэтому в отношении предупреждения повреждений экранных труб, связанных с внутренней коррозией металла, нужно учитывать необходимость комплексного подхода, т.е. воздействия как на водно-химический, так и топочный режим.

Повреждения экранных труб в основном носят смешанный характер, их условно можно разделить на две группы:

1) Повреждения с признаками перегрева стали (деформация и утонение стенок труб в месте разрушения; наличие графитных зерен и т.д.).

2) Хрупкие разрушения без характерных признаков перегрева металла.

На внутренней поверхности многих труб отмечены значительные отложения двухслойного характера: верхний - слабосцепленный, нижний - окалинообразный, плотно сцепленный с металлом. Толщина нижнего слоя окалины составляет 0.4-0.75 мм. В зоне повреждения окалина на внутренней поверхности подвергается разрушению. Вблизи мест разрушений и на некотором удалении от них внутренняя поверхность труб поражена коррозионными язвинами и хрупкими микроповреждениями.

Общий вид повреждений свидетельствует о тепловом характере разрушения. Структурные изменения на лобовой стороне труб - глубокая сферидизация и распад перлита, образование графита (переход углерода в графит 45-85%) - свидетельствует о превышении не только рабочей температуры экранов, но и допустимой для стали 20 500 оС. Наличие FeO также подтверждает высокий уровень температур металла в процессе эксплуатации (выше 845 оК - т.е. 572 оС).

Хрупкие повреждения, вызванные водородом, обычно происходят в зонах с мощными тепловыми потоками, под толстыми слоями отложений, и на-клонных или горизонтальных трубах, а также на участках теплопередачи рядом с подкладными кольцами сварных швов либо другпмии устройства-ми, препятствующими свободному движению потоков..Опыт показал, что повреждения, вызванные водородом, происходят в котлах, работающих под давлением ниже 1000 фунт/кв. дюйм (6.9 МПа).

Повреждення под действием водорода обычно приводят к разрывам с тол-стыми краями. Другие механизмы, способствующие образованию разры-вов с толстыми краями, это коррозионное растрескивание под напряжени-ем, коррозионная усталость, разрывы под действием напряжений, а также (в некоторых редких случаях) сильнейший перегрев. Может оказаться за-труднительным визуально отличить разрушения, вызванные водородным повреждением, от других видов разрушений, однако здесь могут помочь не-которые их особенности.

Например, водородное повреждение почти всегда связано с образова-нием раковин в металле (см. меры предосторожности, приведенные в Гла-вах 4 и 6). Другие виды разрушений (за исключением, возможно, коррози-онной усталости, которая часто начинается в отдельных раковинах) обыч-но не связаны с сильной коррозией.

Аварии труб в результате водородного повреждения металла часто про-являются в виде образования в стенке трубы прямоугольного «окна», что не характерно для других видов разрушений.

Для оценки повреждаемости экранных труб следует учитывать, что металлургическое (исходное) содержание газообразного водорода в стали перлитного класса (в т.ч. ст.20) не превышает 0.5--1 см3/100г. При содержании водорода выше 4--5 см3/100г механические свойства стали существенно ухудшаются. При этом ориентироваться надо преимущественно на локальное содержание остаточного водорода, поскольку при хрупких разрушениях экранных труб резкое ухудшение свойств металла отмечается только в узкой зоне по сечению трубы при неизменно удовлетворительных структуре и механических свойствах прилегаемого металла на удалении всего 0.2-2мм.

Полученные значения средних концентраций водорода у кромки разрушения в 5-10 раз превышают его исходное содержание для ст.20, что не могло не оказать существенного влияния на повреждаемость труб.

Приведенные результаты свидетельствуют, что водородное охрупчивание оказалось решающим фактором повреждаемости экранных труб котлов КрТЭЦ.

Потребовалось дополнительное изучение, какой из факторов оказывает на этот процесс определяющее влияние: а) термоциклирование из-за дестабилизации нормального режима кипения в зонах повышенных тепловых потоков при наличии отложений на испарительной поверхности, а, как результат, - повреждение покрывающих ее защитных оксидных пленок; б) наличие в рабочей среде коррозионно активных примесей, концентрирующихся в отложениях у испарительной поверхности; в) совместное действие факторов "а" и "б".

Особо стоит вопрос о роли топочного режима. Характер кривых свидетельствует о скоплении водорода в ряде случаев вблизи наружной поверхности экранных труб. Это возможно прежде всего при наличии на указанной поверхности плотного слоя сульфидов, в значительной мере не проницаемых для водорода, диффундирующего от внутренней поверхности к наружной. Образование сульфидов обусловлено: высокой сернистостью сжигаемого топлива; набросом факела на экранные панели. Другой причиной наводораживания металла у наружной поверхности является протекание коррозионных процессов при контакте металла с дымовыми газами. Как показал анализ наружных отложений труб котлов, обычно имело место действие обеих приведенных причин.

Роль топочного режима проявляется также в коррозии экранных труб под действием чистой воды, которая чаще всего наблюдается на парогенераторах высокого давления. Очаги коррозии расположены обычно в зоне максимальных местных тепловых нагрузок и только на обогреваемой поверхности трубы. Это явление ведет к образованию круглых или эллиптических углублений диаметром больше 1 см.

Перегрев металла возникает наиболее часто при наличии отложений в связи с тем, что количество воспринятого тепла будет практически одинаковым как для чистой трубы, так и для трубы, содержащей накипь температура трубы будет разной.

Коррозия водогрейных котлов , систем отопления, теплофикационных систем встречается гораздо чаще, нежели в пароконденсатных системах. В большинстве случаев такое положение объясняется тем, что при проектировании водогрейной системы этому уделяется меньше внимания, хотя факторы образования и последующего развития коррозии в котлах остаются точно такими, как и для паровых котлов и всего остального оборудования. Растворенный кислород, который не удаляется методом деаэрации, соли жесткости, углекислый газ, поступающие в водогрейные котлы с питательной водой, вызывают различные виды коррозии - щелочную (межкристаллическую), кислородную, хелатную, подшламовую. Нужно сказать, что хелатная коррозия в большинстве случаев образуется при наличии некоторых химических реагентов, так называемых, «комплексонов».

Для того, чтобы предупредить возникновение коррозии в водогрейных котлах и ее последующее развитие, необходимо серьезно и ответственно отнестись к подготовке характеристик воды, предназначенной для подпитки. Нужно обеспечить связывание свободной двуокиси углерода, кислорода, вывести значение рН до приемлемого уровня, принять меры по защите от коррозии алюминиевых, бронзовых и медных элементов отопительного оборудования и котлов, трубопроводов и теплофикационного оборудования.

В последнее время для качественной коррекционной тепловых сетей, водогрейных котлов и другого оборудования используются специальные химические реагенты.

Вода в одно и то же время является универсальным растворителем и недорогим теплоносителем, ее выгодно использовать в системах отопления. Но недостаточная ее подготовка может привести к неприятным последствиям, одно из которых - коррозия водогрейных котлов . Вероятные риски, в первую очередь связаны с наличием в ней большого количества нежелательных примесей. Предотвратить образование и развитие коррозии можно, но только если четко понимать причины ее появления, а также быть знакомым с современными технологиями .

Для водогрейных котлов, впрочем, как и для любых отопительных систем, использующих в качестве теплоносителя воду, характерны три вида проблем, обусловленных наличием следующих примесей:

  • механических нерастворимых;
  • осадкообразующих растворенных;
  • коррозионноактивных.

Каждый из видов перечисленных примесей может стать причиной образования коррозии и выхода из строя водогрейного котла или иного оборудования. Кроме того, они способствуют снижению эффективности и производительности котла.

И если в течение длительного времени использовать в отопительных системах не прошедшую специальную подготовку воду, то это может привести к серьезным последствиям - поломке циркуляционных насосов, снижению диаметра водопровода и последующее повреждение, выход из строя регулирующей и запорной арматуры. Самые простые механические примеси - глина, песок, обычная грязь - присутствуют практически везде, как в водопроводной воде, так и в артезианских источниках. Также в теплоносителях в больших количествах имеются продукты коррозии теплопередающих поверхностей, трубопроводов и остальных металлических элементов системы, которые постоянно соприкасаются с водой. Не стоит и говорить, что их наличие со временем провоцирует очень серьезные неполадки в функционировании водогрейных котлов и всего теплоэнергетического оборудования, которые в основном связаны с коррозией котлов, образованием известковых отложений, унесением солей и вспениванием котловой воды.

Наиболее частая причина, в связи с которой возникает коррозия водогрейных котлов , это карбонатные отложения, возникающие при использовании воды повышенной жесткости, удаление которых возможно посредствам . Следует отметить, что в результате присутствия солей жесткости накипь образуется даже в низкотемпературном отопительном оборудовании. Но это далеко не единственная причина коррозии. Например, после нагрева воды до температуры более 130 градусов, растворимость сульфата кальция существенно снижается, в результате чего образуется слой плотной накипи. При этом неизбежно развитие коррозии металлических поверхностей водогрейных котлов.