Что такое фракталы в природе. для демонстрации пограничных явлений

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости;
  • губка Менгера - аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ;
  • кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано - непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [ ] .

Рекурсивная процедура получения фрактальных кривых

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i (K) {\displaystyle \Psi \colon K\mapsto \cup _{i=1}^{n}\psi _{i}(K)}

Можно показать, что отображение Ψ {\displaystyle \Psi } является сжимающим отображением на множестве компактов с метрикой Хаусдорфа . Следовательно, по теореме Банаха , это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n {\displaystyle \psi _{i},\,i=1,\dots ,n} - отображения подобия, а n {\displaystyle n} - число звеньев генератора.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n {\displaystyle z_{n}} к бесконечности (определяемой, скажем, как наименьший номер n {\displaystyle n} , при котором | z n | {\displaystyle |z_{n}|} превысит фиксированную большую величину A {\displaystyle A} ).

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики , например, в модели Изинга и перколяции .
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами

Природные объекты (квазифракталы ) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы , …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Система кровообращения и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии -адсорбции , пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании

Фрактальные свойства – не блажь и не плод досужей фантазии математиков. Изучая их, мы учимся различать и предсказывать важные особенности окружающих нас предметов и явлений, которые прежде, если и не игнорировались полностью, то оценивались лишь приблизительно, качественно, на глаз. Например, сравнивая фрактальные размерности сложных сигналов, энцефалограмм или шумов в сердце, медики могут диагностировать некоторые тяжелые заболевания на ранней стадии, когда больному еще можно помочь. Также и аналитик, сравнивая предыдущее поведение цен, в начале зарождения модели может предвидеть дальнейшее ее развитие, тем самым, не допуская грубых ошибок в прогнозировании.

Нерегулярность фракталов

Первым свойством фракталов является их нерегулярность. Если фрактал описывать функцией, то свойство нерегулярности в математических терминах будет означать, что такая функция не дифференцируема, то есть не гладкая ни в какой точке. Собственно к рынку это имеет самое прямое отношение. Колебания цен порой так волатильны и изменчивы, что это приводит многих трейдеров в замешательство. Нашей с вами задачей стоит разобрать весь этот хаос и привести его к порядку.

Знаете ли Вы, что: таким широким разнообразием инвестиционных возможностей , какое предоставляет компания Альпари, не может больше похвастаться ни один Форекс-брокер.

Самоподобие фракталов

Второе свойство гласит, что фрактал – это объект обладающий свойством самоподобия. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом и воспроизводится в различных масштабах без видимых изменений. Однако, изменения все же происходят, что в значительной степени может повлиять на восприятие нами объекта.

Самоподобие означает, что у объекта нет характерного масштаба: будь у него такой масштаб, вы сразу бы отличили увеличенную копию фрагмента от исходного снимка. Самоподобные объекты обладают бесконечно многими масштабами на все вкусы. Суть самоподобия можно пояснить на следующем примере. Представьте себе, что перед вами снимок «настоящей» геометрической прямой, «длины без ширины», как определял линию Евклид, и вы забавляетесь с приятелем, пытаясь угадать, предъявляет ли он вам исходный снимок (оригинал) или увеличенный в нужное число раз снимок любого фрагмента прямой. Как бы ни старались, вам ни за что не удастся отличить оригинал от увеличенной копии фрагмента, прямая во всех своих частях устроена одинаково, она подобна самой себе, но это ее замечательное свойство несколько скрадывается незамысловатой структурой самой прямой, ее «прямолинейностью» (рис. 7).

Если вы точно так же не сможете отличить снимок какого-нибудь объекта от надлежащим образом увеличенного снимка любого его фрагмента, то перед вами – самоподобный объект. Все фракталы, обладающие хотя бы какой-нибудь симметрией, самоподобны. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. Пример самоподобного фрактала:

В финансах эта концепция – не беспочвенная абстракция, а теоретическая переформулировка практичной рыночной поговорки – а именно, что движения акции или валюты внешне похожи, независимо от масштаба времени и цены. Наблюдатель не может сказать по внешнему виду графика, относятся ли данные к недельным, дневным или же часовым изменениям.

Разумеется, далеко не все фракталы обладают столь правильной, бесконечно повторяющейся структурой, как те замечательные экспонаты будущего музея фрактального искусства, которые рождены фантазией математиков и художников. Многие фракталы, встречающиеся в природе (поверхности разлома горных пород и металлов, облака, валютные котировки, турбулентные потоки, пена, гели, контуры частиц сажи и т. д.), лишены геометрического подобия, но упорно воспроизводят в каждом фрагменте статистические свойства целого. Фракталы с нелинейной формой развития были названы Мандельбротом как – мультифракталы. Мультифрактал – это квазифрактальный объект с переменной фрактальной размерностью. Естественно, что реальные объекты и процессы гораздо лучше описываются мультифракталами.

Такое статистическое самоподобие, или самоподобие в среднем, выделяет фракталы среди множества природных объектов.

Рассмотрим пример самоподобия на валютном рынке:

На этих рисунках мы видим, что они похожи, при этом имея разный масштаб времени, на рис. а 15 минутный масштаб, на рис. б недельный масштаб цен. Как видим, данные котировки не обладают свойством идеально повторять друга, однако мы можем считать их подобными.

Даже простейшие из фракталов – геометрически самоподобные фракталы – обладают непривычными свойствами. Например, снежинка фон Коха обладает периметром бесконечной длины, хотя ограничивает конечную площадь (рис. 9). Кроме того, она такая колючая, что ни в одной точке контура к ней нельзя провести касательную (математик сказал бы, что снежинка фон Коха нигде не дифференцируема, то есть не гладкая ни в какой точке).

Мандельброт обнаружил, что результаты фракционного измерения остаются постоянными для различных степеней усиления неправильности объекта. Другими словами, существует регулярность (правильность, упорядоченность) для любой нерегулярности. Когда мы относимся к чему – либо, как к возникающему случайным образом, то это указывает на то, что мы не понимаем природу этой хаотичности. В терминах рынка это означает, что формирование одних и тех же типичных формаций должны происходить в различных временных рамках. Одноминутный график будет описывать фрактальную формацию так же, как и месячный. Такое «само – уподобление», находимое на графиках товарных и финансовых рынков, показывает все признаки того, что действия рынка ближе к парадигме поведения «природы», нежели поведения экономического, фундаментального анализа.

На данных рисунках можно найти подтверждение выше сказанному. Слева изображен график с минутным масштабом, справа недельный. Здесь изображены валютные пары Доллар/Йена (рис. 9 (а)) и Евро/Доллар (рис. 9 (б)) с различными масштабами цен. Даже не смотря на то, что валютная пара JPY/USD имеет другую волатильность по отношению к EUR/USD мы можем наблюдать одну и ту же структуру движения цены.

Фрактальная размерность

Третьим свойством фракталов является то, что фрактальные объекты имеют размерность, отличную от евклидовой (иначе говоря топологическая размерность). Фрактальная размерность, является показателем сложности кривой. Анализируя чередование участков с различной фрактальной размерностью и тем, как на систему воздействуют внешние и внутренние факторы, можно научиться предсказывать поведение системы. И что самое главное, диагностировать и предсказывать нестабильные состояния.

В арсенале современной математики Мандельброт нашел удобную количественную меру неидеальности объектов – извилистости контура, морщинистости поверхности, трещиноватости и пористости объема. Ее предложили два математика – Феликс Хаусдорф (1868-1942) и Абрам Самойлович Безикович (1891-1970). Ныне она заслуженно носит славные имена своих создателей (размерность Хаусдорфа – Безиковича) – размерность Хаусдорфа – Безиковича. Что такое размерность и для чего она нам понадобится применительно к анализу финансовых рынков? До этого нам был известен только один вид размерности – топологическая (рис. 11). Само слово размерность показывает, сколько измерений имеет объект. Для отрезка, прямой линии она равна 1, т.е. мы имеем только одно измерение, а именно длину отрезка либо прямой. Для плоскости размерность будет 2, так как мы имеем двухмерное измерение, длина и ширина. Для пространства или объемных объектов, размерность равна 3: длина, ширина и высота.

Давайте рассмотрим пример с компьютерными играми. Если игра сделана в 3D графике, то она пространственна и объемна, если в 2D графике – графика изображается на плоскости (рис. 10).

Самое необычное (правильнее было бы сказать – непривычное) в размерности Хаусдорфа – Безиковича было то, что она могла принимать не только целые, как топологическая размерность, но и дробные значения. Равная единице для прямой (бесконечной, полубесконечной или для конечного отрезка), размерность Хаусдорфа – Безиковича увеличивается по мере возрастания извилистости, тогда как топологическая размерность упорно игнорирует все изменения, происходящие с линией.

Размерность характеризует усложнение множества (например прямой). Если это кривая, с топологической размерностью равной 1 (прямая линия), то кривую можно усложнить путем бесконечного числа изгибаний и ветвлений до такой степени, что ее фрактальная размерность приблизится к двум, т.е. заполнит почти всю плоскость (рис. 12)

Увеличивая свое значение, размерность Хаусдорфа – Безиковича не меняет его скачком, как сделала бы «на ее месте» топологическая размерность, переход с 1 сразу к 2. Размерность Хаусдорфа – Безиковича – и это на первый взгляд может показаться непривычным и удивительным, принимает дробные значения: равная единице для прямой, она становится равной 1,15 для слегка извилистой линии, 1,2 – для более извилистой, 1,5 – для очень извилистой и т. д.

Именно для того чтобы особо подчеркнуть способность размерности Хаусдорфа – Безиковича принимать дробные, нецелые, значения, Мандельброт и придумал свой неологизм, назвав ее фрактальной размерностью. Итак, фрактальная размерность (не только Хаусдорфа – Безиковича, но и любая другая) – это размерность, способная принимать не обязательно целые значения, но и дробные.

Для линейных геометрических фракталов, размерность характеризует их самоподобность. Рассмотрим рис. 17 (А), линия состоит из N=4 отрезков, каждый из которых имеет длину r = 1/3. В итоге получаем соотношение:

D = logN/log(1/r)

Совсем дело обстоит иначе, когда мы говорим мультифракталах (нелинейных). Здесь размерность утрачивает свой смысл как определение подобия объекта и определяется посредством различных обобщений, куда менее естественных, чем уникальная размерность самоподобных объектов.

На валютном рынке размерностью можно охарактеризовать волатильность котировок цены. Для каждой валютной пары характерно свое поведение в масштабе цен. У пары Фунт/Доллар (рис. 13(а)) оно более спокойно, нежели чем у Евро/Доллар (рис. 13(б)). Самое интересное в том, что данные валюты двигаются одинаковой структурой к ценовым уровням, однако, размерность у них разная, что может сказаться на внутридневной торговле и на ускользающих от не опытного взгляда, изменениях моделей.

На рис. 14 показана размерность применительно к математической модели, для того чтобы вы более глубоко прониклись в значение данного термина. Обратите внимание, что на всех трех рисунках изображен один цикл. На рис. а размерность равна 1.2, на рис. б размерность равна 1.5, а на рис. в 1.9. Видно, что с увеличением размерности восприятие объекта усложняется, возрастает амплитуда колебаний.

На финансовых рынках размерность находит свое отражение не только в качестве волатильности цены, но и в качестве детализации циклов (волн). Благодаря ей, мы сможем различать принадлежность волны к определенному масштабу времени. На рис. 15 изображена пара Евро/Доллар в дневном масштабе цен. Обратите внимание, четко видно сформировавшийся цикл и начало нового, большего цикла. Перейдя на часовой масштаб и увеличив один из циклов, мы сможем заметить более мелкие циклы, и часть крупного, расположенного на D1 (рис. 16). Детализация циклов, т.е. их размерность, позволяет нам определить по начальным условиям, как может в дальнейшем развиваться ситуация. Мы можем сказать, что: фрактальная размерность отражает свойство масштабной инвариантности рассматриваемого множества.

Понятие инвариантности было введено Мандельбротом от слова «sealant» – масштабируемый, т.е. когда объект обладает свойством инвариантности, он имеет различные масштабы отображения.

На рис. 16 кругом А выделен мини цикл (детализированная волна), кругом Б – волна большего цикла. Именно из-за размерности, мы не всегда можем определять ВСЕ циклы на одном масштабе цен.

О проблемах определения и свойствах развития непериодических циклов мы поговорим в разделе «Циклы на валютном рынке», сейчас для нас главное было понять, как и где размерность проявляется на финансовых рынках.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной (случайной) природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернативных путей и определенного темпа эволюции, а также необратимость эволюционных процессов. Нелинейность в математическом смысле означает, определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. Простой пример нелинейной динамической системы:

Джонни растет на 2 дюйма в год. Эта система объясняет, как высота Джонни изменяется во времени. Пусть х (n) будет ростом Джонни в этом году. Пусть его рост в следующем году будет записан, как х (n+1). Тогда мы можем написать динамическую систему в форме уравнения:

х(n+1) = х(n) + 2.

Видите? Разве это не простая математика? Если мы введем сегодняшний рост Джонни х (n) = 38 дюймов, то с правой стороны уравнения мы получим рост Джонни в следующем году, х (n+1) = 40 дюймов:

х(n+1) = х(n) + 2 = 38 + 2 = 40.

Движение справа налево в уравнении называется итерацией (повторением). Мы можем повторить уравнение снова, введя новый рост Джонни 40 дюймов в нужную сторону уравнения (то есть х (n) = 40), и мы получим х (n+1) = 42. Если мы итерируем (повторим) уравнение 3 раза, мы получим рост Джонни через 3 года, а именно 44 дюйма, начав с роста 38 дюймов.

Это – детерминированная динамическая система. Если мы хотим сделать ее недетерминированной (стохастической), мы могли бы сделать такую модель: Джонни растет на 2 дюйма в год, больше или меньше и записать уравнение, как:

х(n+1) = х(n) + 2 + е

где е – небольшая ошибка (небольшая относительно 2), представляет некоторое вероятностное распределение.

Давайте вернемся к первоначальному детерминированному уравнению. Первоначальное уравнение, х(n+1) = х(n) + 2, является линейным. Линейное означает, что Вы добавляете переменные или константы или умножаете переменные на константы. Например, уравнение

z(n+l) = z(n) + 5 y(n) -2 x(n)

является линейным. Но если Вы перемножите переменные, или возведете их в степень, большую единицы, уравнение (система) станет нелинейным. Например, уравнение

х(n+1) = х(n) 2

является нелинейным, потому что х (n) – возведено в квадрат. Уравнение

является нелинейным, потому что две переменные, х и у, перемножены.

Когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное, т.е. полностью зависит от начальных условий и поддается четкому прогнозу. Вы самостоятельно можете выполнить одну из таких моделей в Excel. Пример классической модели можно представить в виде постоянно убывающей, либо возрастающей тенденции. И мы можем предсказать ее поведение, зная прошлое объекта(исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие. Именно такой системой и является межбанковский валютный рынок.

Давайте теперь рассмотрим, как из прямой можно получить то, что мы называем фракталом, с присущими ему свойствами.

На рис. 17 (А) изображена кривая Коха. Возьмем отрезок линии, ее длина = 1, т.е. пока еще топологическая размерность. Теперь мы разделим ее на три части (каждая по 1/3 длины), и удалим среднюю треть. Но мы заменим среднюю треть двумя отрезками (каждый по 1/3 длины), которые можно представить, как две стороны равностороннего треугольника. Это стадия два (b) конструкции изображена на рис. 17 (А). В этой точке мы имеем 4 меньших доли, каждая по 1/3 длины, так что вся длина – 4(1/3) = 4/3. Затем мы повторяем этот процесс для каждой из 4 меньших долей линии. Это – стадия три (с). Это даст нам 16 еще меньших долей линии, каждая по 1/9 длины. Так что вся длина теперь 16/9 или (4/3) 2 . В итоге получили дробную размерность. Но не только это отличает образовавшуюся структуру от прямой. Она стала самоподобной и ни в одной ее точке невозможно провести касательную (рис. 17 (Б)).

Содержание

Всем здравствуйте! Меня зовут,Рибенек Валерия, г.Ульяновск и сегодня я выложу несколько своих научных статей на сайте ЛКИ.

Первая моя научная статья в этом блоге будет посвящена фракталам . Скажу сразу, что мои статьи рассчитаны почти на любую аудиторию. Т.е. они, надеюсь, будут интересны, как школьникам, так и студентам.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математике. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.
Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.
Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Существует большое число математических объектов называемых фракталами (треугольник Серпинского, снежинка Коха, кривая Пеано, множество Мандельброта и лоренцевы аттракторы). Фракталы с большой точностью описывают многие физические явления и образования реального мира: горы, облака, турбулентные (вихревые) течения, корни, ветви и листья деревьев, кровеносные сосуды, что далеко не соответствует простым геометрическим фигурам. Впервые о фрактальной природе нашего мира заговорил Бенуа Мандельброт в своей основополагающей работе "Фрактальная геометрия природы" .
Термин фрактал введен Бенуа Мандельбротом в 1977 году в его фундаментальной работе "Фракталы, Форма, Хаос и Размерность" . Согласно Мандельброту, слово фрактал происходит от латинских слов fractus - дробный и frangere - ломать, что отражает суть фрактала, как "изломанного", нерегулярного множества.

Классификация фракталов.

Для того, чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации. Существует три класса фракталов.

1. Геометрические фракталы.

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Рассмотрим на примере один из таких фрактальных объектов - триадную кривую Коха.

Построение триадной кривой Коха.

Возьмем прямолинейный отрезок длины 1. Назовем его затравкой . Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть и заменим ее ломаной из двух звеньев длиной 1/3.

Мы получим ломаную, состоящую из 4 звеньев с общей длиной 4/3 , - так называем первое поколение .

Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена отбросить и заменить среднюю часть. Соответственно длина второго поколения будет 16/9, третьего - 64/27. если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.

Рассмотрим теперь св-ва триадной кривой Коха и выясним, почему же фракталы называли «монстрами».

Во-первых, эта кривая не имеет длины - как мы убедились, с числом поколений ее длина стремится к бесконечности.

Во-вторых, к этой кривой невозможно построить касательную - каждая ее точка является точкой перегиба, в которой производная не существует, - эта кривая не гладкая.

Длина и гладкость - фундаментальные св-ва кривых, которые изучаются как евклидовой геометрией, так и геометрией Лобачевского, Римана. К триадной кривой Коха традиционные методы геометрического анализа оказались неприменимы, поэтому кривая Коха оказалась чудовищем - «монстром» среди гладких обитателей традиционных геометрий.

Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рисунке представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Кривая, при n стремящемуся к бесконечности, называется драконом Хартера-Хейтуэя.
В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.
Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта. Алгоритм его построения достаточно прост и основан на простом итеративном выражении: Z = Z[i] * Z[i] + C , где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки с прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе хаотически менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.
Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

О применении фракталов

Прежде всего, фракталы - область удивительного математического искусства, когда с помощью простейших формул и алгоритмов получаются картины необычайной красоты и сложности! В контурах построенных изображений нередко угадываются листья, деревья и цветы.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. Современная физика и механика только-только начинают изучать поведение фрактальных объектов. И, конечно же, фракталы применяются непосредственно в самой математике.
Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.
Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.
Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами, например фрактальные облака из 3D studio MAX, фрактальные горы в World Builder. Фрактальные деревья, горы и целые пейзажи задаются простыми формулами, легко программируются и не распадаются на отдельные треугольники и кубики при приближении.
Нельзя обойти стороной и применения фракталов в самой математике. В теории множеств множество Кантора доказывает существование совершенных нигде не плотных множеств, в теории меры самоаффинная функция "Канторова лестница" является хорошим примером функции распределения сингулярной меры.
В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.
При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

О построении фракталов

Метод последовательных приближений

Глядя на эту картинку, нетрудно понять, как можно построить самоподобный фрактал (в данном случае пирамиду Серпинского). Нужно взять обычную пирамиду (тетраэдр), затем вырезать ее середину (октаэдр), в результате чего у нас получается четыре маленьких пирамидки. С каждой из них мы проделываем ту же самую операцию и т.д. Это несколько наивное, но наглядное объяснение.

Рассмотрим суть метода более строго. Пусть имеется некоторая IFS-система, т.е. система сжимающих отображений S ={S 1 ,...,S m } S i:R n ->R n (например, для нашей пирамидки отображения имеют вид S i (x)=1/2*x+o i , где o i - вершины тетраэдра, i=1,..,4). Затем выбираем некоторое компактное множество A 1 в R n (в нашем случае выбираем тетраэдр). И определяем по индукции последовательность множеств A k:A k+1 =S 1 (A k) U...U S m (A k). Известно, что множества A k с ростом k, всё лучше приближают искомый аттрактор системы S .

Заметим, что каждая из этих итераций является аттрактором рекуррентной системы итерированных функций (английский термин Digraph IFS , RIFS и также Graph-directed IFS ) и поэтому их легко построить с помощью нашей программы.

Построение по точкам или вероятностный метод

Это наиболее лёгкий для реализации на компьютере метод. Для простоты рассмотрим случай плоского самоаффинного множества. Итак, пусть {S

} - некоторая система аффинных сжатий. Отображения S

представимые в виде: S

Фиксированная матрица размера 2x2 и o

Двумерный вектор столбец.

  • Возьмем неподвижную точку первого отображения S 1 в качестве начальной точки:
    x:= o1;
    Здесь мы пользуемся тем, что все неподвижные точки сжатий S 1 ,..,S m принадлежат фракталу. В качестве начальной точки можно выбрать произвольную точку и порожденная ею последовательность точек стянется к фракталу, но тогда на экране появятся несколько лишних точек.
  • Отметим текущую точку x=(x 1 ,x 2) на экране:
    putpixel(x 1 ,x 2 ,15);
  • Выберем случайным образом число j от 1 до m и пересчитаем координаты точки x:
    j:=Random(m)+1;
    x:=S j (x);
  • Переходим на шаг 2, либо, если сделали достаточно большое число итераций, то останавливаемся.

Примечание. Если коэффициенты сжатия отображений S i разные, то фрактал будет заполняться точками неравномерно. В случае, если отображения S i являются подобиями, этого можно избежать небольшим усложнением алгоритма. Для этого на 3-ем шаге алгоритма число j от 1 до m надо выбирать с вероятностями p 1 =r 1 s ,..,p m =r m s , где r i обозначают коэффициенты сжатия отображений S i , а число s (называемое размерностью подобия) находится из уравнения r 1 s +...+r m s =1. Решение этого уравнения можно найти, например, методом Ньютона.

О фракталах и их алгоритмах

Фрактал происходит от латинского прилагательного "fractus", и в переводе означает состоящий из фрагментов, а соответствующий латинский глагол "frangere" означает разбивать, то есть создавать неправильные фрагменты. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Термин был предложен Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature» - «Фрактальная геометрия природы». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф).

Коррективы

Позволю себе внести некоторые коррективы в алгоритмы предложенные в книге Х.-О. Пайтгена и П.Х.Рихтера "Красота фракталов" М. 1993 сугубо для искоренения опечаток иоблегчения понимания процессов поскольку после их изучения многое осталось для меня загадкой. К сожалению эти "понятные" и "простые" алгоритмы ведут качующий образ жизни.

В основе построения фракталов лежит некая нелинейная функция комплексного процесса с обратной связью z=> z 2 +c поскольку z и с -комплексные числа, то z=x+iy, c=p+iq необходимо разложить его на х и у чтобы перейти в более реальную для простого человека плоскость:

x(k+1)=x(k) 2 -y(k) 2 + p,
y(k+1)=2*x(k)*y(k) + q.

Плоскость, состоящая из всех пар (x,y), может рассматриваться, как при фиксированных значениях р и q , так и при динамических. В первом случае перебирая по закону все точки (х,у) плоскости и окрашивая их в зависимости от количества повторений функции необходимых для выхода из итерационного процесса или не окрашивая (черный цвет) при привышении допустимого максимума повторений мы получим отображение множества Жюлиа. Если, напротив, определить начальнуюя пару значений (x,y) и проследить ее колористическую судьбу при динамически изменяющихся значениях параметров p и q, то получаим изображения, называемые множествами Мандельброта.

К вопросу об алгоритмах раскраски фракталов.

Обычно тело множества представляют в виде черного поля, хотя очевидно, что черный цвет может быть заменен на любой другой, но это тоже мало интересный результат. Получить изображение множества раскрашенного во все цвета - задача которая не может решаться при помощи циклических операций т.к. количество итерации формирующих тело множества равно максимально возможному и всегда одно и тоже. Раскрасить множество в разные цвета возможно применив в качестве номера цвета результат проверки условия выхода из цикла (z_magnitude) или подобный ему, но с другими математическими действиями.

Применение "фрактального микроскопа"

для демонстрации пограничных явлений.

Аттракторы - центры ведущие борьбу за доминирование на плоскости. Между аттракторами возникает граница представляющая витееватый узор. Увеличивая масштаб рассмотрения в пределах границ множества можно получать нетривиальные узоры отражаюшие состояние детерминированного хаоса - обычного явления в мире природы.

Исследуемые географами объекты образуют систему с весьма сложно организованными границами, в связи с чем их проведение становится не простой практической задачей. Природные комплексы имеют ядра типичности выступающие в качестве аттракторов теряющих силу влияния на территорию по мере ее удаления.

Используя фрактальный микроскоп для множеств Мандельброта и Жюлиа можно сформировать представление о пограничных процессах и явлениях, одинаково сложных не зависимо от масштаба рассмотрения и таким образом подготовить восприятие специалиста к встрече с динамичным и на первый взгляд хаотичным в пространстве и времени природным объектом, к пониманию фрактальной геометрии природы. Многоцветие красок и фрактальная музыка определенно оставят глубокий след в сознании учащихся.

Фракталам посвящены тысячи публикаций и огромные ресурсы интернет, однако для многих специалистов далеких от информатики данный термин представляется абсолютно новым. Фракталы, как объекты представляющие интерес для специалистов различных отраслей знания, должны получить надлежащее место в курсе информатики.

Примеры

РЕШЕТКА СЕРПИНСКОГО

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского , возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

КРИВАЯ КОХА

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

ФРАКТАЛ МАНДЕЛЬБРОТА

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5.

ПЯТИУГОЛЬНИК ДАРЕРА

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Вариант этого фрактала можно получить при использовании в качестве инициатора шестиугольника. Этот фрактал называется Звезда Давида и он довольно похож на шестиугольную версию Снежинки Коха. Фрактальная размерность пятиугольника Дарера ln6/ln(1+g), где g - отношение длины большей стороны треугольника к длине меньшей. В данном случае, g - это Золотая Пропорция, так что фрактальная размерность приблизительно равна 1.86171596. Фрактальное измерение Звезды Давида ln6/ln3 или 1.630929754.

Сложные фракталы

Фактически, если вы увеличите маленькую область любого сложного фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

Рис 1. Приближение множества Мандельброта

Сравните, например приведенные здесь картинки множества Мандельброта, одна из которых получена при увеличении некоторой области другой. Как видно, они абсолютно не являются идентичными, хотя на обоих мы видим черный круг, от которого в разные стороны идут пылающие щупальца. Эти элементы повторяются бесконечно долго во множестве Мандельброта в уменьшающейся пропорции.

Детерминистские фракталы являются линейными, тогда как сложные фракталы таковыми не являются. Будучи нелинейными, эти фракталы генерируются тем, что Мандельброт назвал нелинейными алгебраическими уравнениями. Хороший пример - это процесс Zn+1=ZnІ + C, что является уравнением, используемым для построения множества Мандельброта и Жулии второй степени. Решение этих математических уравнений вовлекает комплексные и мнимые числа. Когда уравнение интерпретируется графически на комплексной плоскости, результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Как можно увидеть, смотря на картинки, сложные фракталы действительно очень сложны и их невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. В отличии от детерминистских фракталов, сложные фракталы не вычисляются за 5-10 итераций. Практически каждая точка на экране компьютера как отдельный фрактал. Во время математической обработки, каждая точка рассматривается как отдельный рисунок. Каждой точке соответствует определенное значение. Уравнение встраивается, применительно к каждой точке и производится, к примеру 1000 итераций. Для получения сравнительно неискаженного изображения за приемлемый для домашних компьютеров промежуток времени, для одной точки возможно проводить 250 итерации.

Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам. После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения.

Обычно, быстро движущиеся точки закрашивают в красный цвет, тогда как более медленные в желтый и так далее. Темные точки, вероятно, самые стабильные.

Сложные фракталы отличаются от детерминистских в том смысле, что они бесконечно сложные, но, при этом, могут быть сгенерированы очень простой формулой. Детерминистским фракталам не нужны формулы или уравнения. Просто возьмите чертежную бумагу и вы можете построить решето Серпинского до 3 или 4 итерации без каких-либо затруднений. Попробуйте сделать это с множеством Жулиа! Легче пойти мерить длину береговой линии Англии!

МНОЖЕСТВО МАНДЕЛЬБРОТА

Рис 2. Множество Мандельброта

Множества Мандельброта и Жулиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.
Рис 3. Появление пузырьков при a=3.5

Также популярен процесс Z=Z*tg(Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

МНОЖЕСТВО ЖУЛИА

Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это "если оба фрактала сгенерированы по одной формуле, почему они такие разные?" Сначала посмотрите на картинки множества Жулиа. Достаточно странно, но существуют разные типы множеств Жулиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жулиа.

Рис 4. Множество Жулиа

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жулиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жулиа. Множества Жулиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жулиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жулиа, соответствующий определенной точке фрактала Мандельброта.