Химические реакции водорода. Кислород и его свойства

Характеристика s-элементов

К блоку s-элементов относятся 13 элементов, общим для которых является застраивание в их атомах s-подуровня внешнего энергетического уровня.

Хотя водород и гелий относятся к s-элементам из-за специфики их свойств их следует рассматривать отдельно. Водород, натрий, калий, магний, кальций - жизненно необходимые элементы.

Соединения s-элементов проявляют общие закономерности в свойствах, что объясняется сходством электронного строения их атомов. Все внешние электроны являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой и находится данный элемент. Степень окисления металлов s-элементов всегда положительна. Другая особенность заключается в том, что после отделения электронов внешнего слоя остается ион, имеющий оболочку благородного газа. При увеличении порядкового номера элемента, атомного радиуса, уменьшается энергии ионизации (от 5,39 эВ y Li до 3,83 эВ y Fr), а восстановительная активность элементов возрастает.

Подавляющее большинство соединений s-элементов бесцветно (в отличие от соединений d-элементов), так как исключен обуславливающий окраску переход d-электронов с низких энергетических уровней на более высокие энергетические уровни.

Соединения элементов групп IA - IIA - типичные соли, в водном растворе они практически полностью диссоциируют на ионы, не подверженны гидролизу по катиону (кроме солей Be 2+ и Mg 2+).

водород гидрид ионный ковалентный

Для ионов s-элементов комплексообразование не характерно. Кристаллические комплексы s - элементов с лигандами H 2 O-кристаллогидраты, известны с глубокой древности, например: Na 2 В 4 O 7 10H 2 O-бура, KАl (SO 4) 2 12H 2 O-квасцы. Молекулы воды в кристаллогидратах группируются вокруг катиона, но иногда полностью окружают и анион. Вследствие малого заряда иона и большого радиуса иона щелочные металлы наименее склонны к образованию комплексов, в том числе и аквакомплексов. В качестве комплексообразователей в комплексных соединениях невысокой устойчивости выступают ионы лития, бериллия, магния.

Водород. Химические свойства водорода

Водород - наиболее легкий s-элемент. Его электронная конфигурация в основном состоянии 1S 1 . Атом водорода состоит из одного протона и одного электрона. Особенность водорода состоит в том, что его валентный электрон находится непосредственно в сфере действия атомного ядра. У водорода нет промежуточного электронного слоя, поэтому водород нельзя считать электронным аналогом щелочных металлов.

Как и щелочные металлы водород является восстановителем, проявляет степень окисления +1, Спектры водорода сходны со спектрами щелочных металлов. Со щелочными металлами сближает водород его способность давать в растворах гидратированный положительно заряженный ион Н + .

Подобно галогеном атому водорода не достает одного электрона. Этим и обусловлено существование гидрид-иона Н - .

Кроме того, как и атомы галогенов атомы водорода характеризуются высоким значением энергии ионизации (1312 кдж/моль). Таким образом, водород занимает особое положение в Периодической системе элементов.

Водород - самый распространенный элемент во вселенной: он составляет до половины массы солнца и большинства звезд.

На солнце и других планетах водород находится в атомарном состоянии, в межзвездной среде в виде частично ионизированных двухатомных молекул.

Водород имеет три изотопа; протий 1 Н, дейтерий 2 Д и тритий 3 Т, причем тритий - радиоактивный изотоп.

Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой и обладают большой подвижностью. Поэтому у водорода очень низкие температуры плавления (-259,2 о С) и кипения (-252,8 о С). Из-за высокой энергии диссоциации (436 кдж/моль) распад молекул на атомы происходит при температурах выше 2000 о С. Водород бесцветный газ без запаха и вкуса. Он имеет малую плотность - 8,99·10 -5 г/см При очень высоких давлениях водород переходит в металлическое состояние. Считается, что на дальних планетах солнечной системы - Юпитере и Сатурне водород находится в металлическом состоянии. Существует предположение, что в состав земного ядра также входит металлический водород, где он находится при сверхвысоком давлении, создаваемым земной мантией.

Химические свойства. При комнатной температуре молекулярный водород реагирует лишь со фтором, при облучении светом - с хлором и бромом, при нагревании с О 2 ,S, Se, N 2 , C, I 2 .

Реакции водорода с кислородом и галогенами протекают по радикальному механизму.

Взаимодействие с хлором - пример неразветвленной реакции при облучении светом (фотохимическая активация), при нагревании (термическая активация).

Сl+ H 2 = HCl + H (развитие цепи)

H+ Сl 2 = HCl + Сl

Взрыв гремучего газа - водородокислородной смеси - пример разветвленного цепного процесса, когда инициированние цепи включает не одну, а несколько стадий:

Н 2 + О 2 = 2ОН

Н+ О 2 = ОН+О

О+ Н 2 = ОН+ Н

ОН+ Н 2 = Н 2 О + Н

Взрывного процесса удается избежать, если работать с чистым водородом.

Поскольку для водорода характерна - положительная (+1) и отрицательная (-1) степень окисления, водород может проявлять и восстановительные, и окислительные свойства.

Восстановительные свойства водорода проявляются при взаимодействии с неметаллами:

Н 2 (г) + Cl 2 (г) = 2НCl (г),

2Н 2 (г) + О 2 (г) = 2Н 2 О (г),

Эти реакции протекают с выделением большого количества теплоты, что свидетельствуют о высокой энергии (прочности) связей Н-Сl, Н-О. Поэтому водород проявляет восстановительные свойства по отношению ко многим оксидам, галогенидам, например:

На этом основано применение водорода в качестве восстановителя для получения простых веществ из оксидов галогенидов.

Еще более сильным восстановителем является атомарный водород. Он образуется из молекулярного в электронном разряде в условиях низкого давления.

Высокой восстановительной активностью обладает водород в момент выделения при взаимодействии металла с кислотой. Такой водород восстанавливает CrCl 3 в CrCl 2:

2CrCl 3 + 2HСl + 2Zn = 2CrCl 2 + 2ZnCl 2 +H 2 ^

Важное значение имеет взаимодействие водорода с оксидом азота (II):

2NO + 2H 2 = N 2 + H 2 O

Используемое в очистительных системах при производстве азотной кислоты.

В качестве окислителя водород взаимодействует с активными металлами:

В данном случае водород ведет себя как галоген, образуя аналогичные галогенидам гидриды .

Гидриды s-элементов I группы имеют ионную структуру типа NaCl. В химическом отношении ионные гидриды ведут себя как основные соединения.

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород неметаллических элементов, например, гидриды состава SiH 4 , ВН 3 , СН 4 . По химической природе гидриды неметаллов являются кислотными соединениями.

Характерной особенностью гидролиза гидридов является выделение водорода, реакция протекает по окислительно-восстановительному механизму.

Основной гидрид

Кислотный гидрид

За счет выделения водорода гидролиз протекает полностью и необратимо (?Н<0, ?S>0). При этом основные гидриды образуют щелочь, а кислотные кислоту.

Стандартный потенциал системы В. Следовательно, ион Н - сильный восстановитель.

В лаборатории водород получают взаимодействием цинка с 20% -й серной кислотой в аппарате Киппа.

Технический цинк часто содержит небольшие примеси мышьяка и сурьмы, которые восстанавливаются водородом в момент выделения до ядовитых газов: арсина SbH 3 и стабина SbH Таким водородом можно отравиться. С химически чистым цинком реакция протекает медленно из-за перенапряжения и хорошего тока водорода получить не удается. Скорость этой реакции увеличивается путем добавления кристалликов медного купороса, реакция ускоряется за счет образования гальванической пары Cu-Zn.

Более чистый водород образуется при действии щелочи на кремний или алюминий при нагревании:

В промышленности чистый водород получают электролизом воды, содержащей электролиты (Na 2 SO 4 , Ba (OH) 2).

Большое количество водорода образуется в качестве побочного продукта при электролизе водного раствора хлорида натрия с диафрагмой, разделяющей катодное и анодное пространство,

Наибольшее количество водорода получают газификацией твердого топлива (антрацита) перегретым водяным паром:

Либо конверсией природного газа (метана) перегретым водяным паром:

Образующаяся смесь (синтез-газ) используется в производстве многих органических соединений. Выход водорода можно увеличить, пропуская синтез-газ над катализатором, при этом СО превращается вСО 2 .

Применение. Большое количество водорода расходуется на синтез аммиака. На получение хлороводорода и соляной кислоты, для гидрогенизации растительных жиров, для восстановления металлов (Mо, W, Fe) из оксидов. Водород-кислородное пламя используют для сварки, резки и плавления металлов.

Жидкий водород используют в качестве ракетного топлива. Водородное топливо является экологически безопасным и более энергоемким, чем бензин, поэтому в будущем оно может заменить нефтепродукты. Уже сейчас в мире на водороде работает несколько сот автомобилей. Проблемы водородной энергетики связаны с хранением и транспортировкой водорода. Водород храня в подземных танкерах в жидком состоянии под давлением 100 атм. Перевозка больших количеств жидкого водорода представляет серьезную опасность.

Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Рис. 3. Паровая конверсия метана.

  • разложение метана в присутствии катализатора (Ni) при температуре 400 градусов:

Водород – особый элемент, занимающий сразу две ячейки в периодической системе Менделеева. Он располагается в двух группах элементов, обладающих противоположными свойствами, и эта особенность делает его уникальным. Водород является простым веществом и составной частью многих сложных соединений, это органогенный и биогенный элемент. Стоит подробно ознакомиться с основными его особенностями и свойствами.

Водород в периодической системе Менделеева

Главные особенности водорода, указанные в :

  • порядковый номер элемента – 1 (протонов и электронов столько же);
  • атомная масса составляет 1,00795;
  • водород имеет три изотопа, каждый из которых обладает особыми свойствами;
  • благодаря содержанию только одного электрона, водород способен проявлять восстановительные и окислительные свойства, а после отдачи электрона водород имеет свободную орбиталь, принимающую участие в составлении химических связей по донорно-акцепторному механизму;
  • водород – легкий элемент с небольшой плотностью;
  • водород является сильным восстановителем, он открывает группу щелочных металлов в первой группе главной подгруппе;
  • когда водород вступает в реакцию с металлами и другими сильными восстановителями, он принимает их электрон и становится окислителем. Такие соединения называются гидридами. По указанному признаку водород условно относится к группе галогенов (в таблице он приводится над фтором в скобках), с которыми он имеет сходство.

Водород как простое вещество

Водород - это газ, молекула которого состоит из двух . Это вещество было открыто в 1766 году британским ученым Генри Кавендишем. Он доказал, что водород является газом, который взрывается при взаимодействии с кислородом. После изучения водорода химики установили, что это вещество является самым легким из всех известных человеку.

Другой ученый, Лавуазье, присвоил элементу имя «гидрогениум», что в переводе с латыни означает «рождающий воду». В 1781 году Генри Кавендиш доказал, что вода является сочетанием кислорода и водорода. Другими словами, вода - это продукт реакции водорода с кислородом. Горючие свойства водорода были известны еще древним ученым: соответствующие записи оставил Парацельс, живший в XVI столетии.

Молекулярный водород - это образующееся естественным путем распространенное в природе газообразное соединение, которое состоит из двух атомов и при поднесении горящей лучинки. Молекула водорода может распадаться на атомы, превращающиеся в ядра гелия, так как они способны участвовать в ядерных реакциях. Такие процессы регулярно протекают в космосе и на Солнце.

Водород и его физические свойства

Водород имеет такие физические параметры:

  • кипит при температуре -252,76 °C;
  • плавится при температуре -259,14 °C; *в указанных температурный пределах водород - это не имеющая запаха бесцветная жидкость;
  • в воде водород слабо растворяется;
  • водород теоретически может перейти в металлическое состояние при обеспечении особых условий (низких температур и высокого давления);
  • чистый водород - взрывоопасное и горючее вещество;
  • водород способен диффундировать сквозь толщу металлов, поэтому хорошо в них растворяется;
  • водород легче воздуха в 14,5 раз;
  • при высоком давлении можно получить снегообразные кристаллы твердого водорода.

Химические свойства водорода


Лабораторные способы:

  • взаимодействие разбавленных кислот с активными металлами и металлами средней активности;
  • гидролиз гидридов металлов;
  • реакция с водой щелочных и щелочноземельных металлов.

Соединения водорода:

Галогенводороды; летучие водородные соединения неметаллов; гидриды; гидроксиды; гидроксид водорода (вода); пероксид водорода; органические соединения (белки, жиры, углеводороды, витамины, липиды, эфирные масла, гормоны). Нажмите , чтобы увидеть безопасные эксперименты на изучение свойств белков, жиров и углеводов.

Чтобы собрать образующийся водород, нужно держать пробирку перевернутой вверх дном. Водород нельзя собрать, как углекислый газ, ведь он намного легче воздуха. Водород быстро улетучивается, а при смешении с воздухом (или при большом скоплении) взрывается. Поэтому необходимо переворачивать пробирку. Сразу после заполнения пробирка закрывается резиновой пробкой.

Чтобы проверить чистоту водорода, нужно поднести зажженную спичку к горлышку пробирки. Если произойдет глухой и тихий хлопок - газ чистый, а примеси воздуха минимальные. Если хлопок громкий и свистящий - газ в пробирке грязный, в нем присутствует большая доля посторонних компонентов.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Гидроген Н - химический элемент, один из самых распространённых в нашей Вселенной. Масса водорода как элемента в составе веществ составляет 75 % от общего содержания атомов другого типа. Он входит в наиважнейшее и жизненно необходимое соединение на планете - воду. Отличительной особенностью водорода также является то, что он первый элемент в периодический системе химических элементов Д. И. Менделеева.

Открытие и исследование

Первые упоминания о водороде в трудах Парацельса датируются шестнадцатым веком. Но его выделение из газовой смеси воздуха и исследование горючих свойств были произведены уже в семнадцатом веке учёным Лемери. Досконально изучил гидроген английский химик, физик и естествоиспытатель который опытным путём доказал, что масса водорода наименьшая в сравнении с другими газами. В последующих этапах развития науки многие учёные работали с ним, в частности Лавуазье, назвавший его «рождающим воду».

Характеристика по положению в ПСХЭ

Элемент, открывающий периодическую таблицу Д. И. Менделеева, - это водород. Физические и химические свойства атома проявляют некую двойственность, так как гидроген одновременно относят к первой группе, главной подгруппе, если он ведёт себя как металл и отдаёт единственный электрон в процессе химической реакции, и к седьмой - в случае полного заполнения валентной оболочки, то есть приёме отрицательной частицы, что характеризует его как подобный галогенам.

Особенности электронного строения элемента

Свойства сложных веществ, в состав которых он входит, и самого простого вещества Н 2 в первую очередь определяются электронной конфигурацией гидрогена. Частица имеет один электрон с Z= (-1), который вращается по своей орбите вокруг ядра, содержащего один протон с единичной массой и положительным зарядом (+1). Его электронная конфигурация записывается как 1s 1 , что означает наличие одной отрицательной частицы на самой первой и единственной для гидрогена s-орбитали.

При отрыве или отдаче электрона, а атом этого элемента имеет такое свойство, что роднит его с металлами, получается катион. По сути ион водорода - это положительная элементарная частица. Поэтому лишенный электрона гидроген называют попросту протоном.

Физические свойства

Если описывать водорода кратко, то это бесцветный, малорастворимый газ с относительной атомной массой равной 2, в 14,5 раза легче, чем воздух, с температурой сжижения, составляющей -252,8 градуса Цельсия.

На опыте можно легко убедиться в том, что Н 2 самый легкий. Для этого достаточно наполнить три шара различными веществами - водородом, углекислым газом, обычным воздухом - и одновременно выпустить их из руки. Быстрее всех достигнет земли тот, который наполнен СО 2 , после него опустится надутый воздушной смесью, а содержащий Н 2 вовсе поднимется к потолку.

Маленькая масса и размер частиц водорода обосновывают его способность проникать через различные вещества. На примере того же шара в этом легко убедиться, через пару дней он сам сдуется, так как газ просто пройдёт через резину. Также водород может накапливаться в структуре некоторых металлов (палладий или платина), а при повышении температуры испаряться из неё.

Свойство малорастворимости водорода используют в лабораторной практике для его выделения способом вытеснения водорода (таблица, изображенная ниже, содержит основные параметры) определяют сферы его применения и методы получения.

Параметр атома или молекулы простого вещества Значение
Атомная масса (молярная масса) 1,008 г/моль
Электронная конфигурация 1s 1
Кристаллическая решётка Гексагональная
Теплопроводность (300 K) 0,1815 Вт/(м·К)
Плотность при н. у. 0,08987 г/л
Температура кипения -252,76 °C
Удельная теплота сгорания 120,9·10 6 Дж/кг
Температура плавления -259,2 °C
Растворимость в воде 18,8 мл/л

Изотопный состав

Как и многие другие представители периодической системы химических элементов, гидроген имеет несколько природных изотопов, то есть атомов с одинаковым числом протонов в ядре, но различным числом нейтронов - частиц с нулевым зарядом и единичной массой. Примеры атомов, обладающих подобным свойством - кислород, углерод, хлор, бром и прочие, в том числе радиоактивные.

Физические свойства водорода 1 Н, самого распространённого из представителей данной группы, значительно отличаются от таких же характеристик его собратьев. В частности, разнятся особенности веществ, в состав которых они входят. Так, существует обычная и дейтерированная вода, содержащая в своём составе вместо атома водорода с одним-единственным протоном дейтерий 2 Н - его изотоп с двумя элементарными частицами: положительной и незаряженной. Этот изотоп в два раза тяжелее обычного гидрогена, что и объясняет кардинальное различие в свойствах соединений, которые они составляют. В природе дейтерий встречается в 3200 раз реже, чем водород. Третий представитель - тритий 3 Н, в ядре он имеет два нейтрона и один протон.

Способы получения и выделения

Лабораторные и промышленные методы весьма отличаются. Так, в малых количествах газ получают в основном с помощью реакций, в которых участвуют минеральные вещества, а крупномасштабные производства в большей степени используют органический синтез.

В лаборатории применяют следующие химические взаимодействия:


В промышленных интересах газ получают такими методами, как:

  1. Термическое разложение метана в присутствии катализатора до составляющих его простых веществ (350 градусов достигает значение такого показателя, как температура) - водорода Н 2 и углерода С.
  2. Пропускание парообразной воды через кокс при 1000 градусов Цельсия с образованием углекислого газа СО 2 и Н 2 (самый распространённый метод).
  3. Конверсия газообразного метана на никелевом катализаторе при температуре, достигающей 800 градусов.
  4. Водород является побочным продуктом при электролизе водных растворов хлоридов калия или натрия.

Химические взаимодействия: общие положения

Физические свойства водорода во многом объясняют его поведение в процессах реагирования с тем или иным соединением. Валентность гидрогена равняется 1, так как он в таблице Менделеева расположен в первой группе, а степень окисления проявляет различную. Во всех соединениях, кроме гидридов, водород в с.о.= (1+), в молекулах типа ХН, ХН 2 , ХН 3 - (1-).

Молекула газа водорода, образованная посредством создания обобщенной электронной пары, состоит из двух атомов и довольно устойчива энергетически, именно поэтому при нормальных условиях несколько инертна и в реакции вступает при изменении нормальных условий. В зависимости от степени окисления водорода в составе прочих веществ, он может выступать как в качестве окислителя, так и восстановителя.

Вещества, с которыми реагирует и которые образует водород

Элементные взаимодействия с образованием сложных веществ (часто при повышенных температурах):

  1. Щелочной и щелочноземельный металл + водород = гидрид.
  2. Галоген + Н 2 = галогеноводород.
  3. Сера + водород = сероводород.
  4. Кислород + Н 2 = вода.
  5. Углерод + водород = метан.
  6. Азот + Н 2 = аммиак.

Взаимодействие со сложными веществами:

  1. Получение синтез-газа из монооксида углерода и водорода.
  2. Восстановление металлов из их оксидов с помощью Н 2 .
  3. Насыщение водородом непредельных алифатических углеводородов.

Водородная связь

Физические свойства водорода таковы, что позволяют ему, находясь в соединении с электроотрицательным элементом, образовывать особый тип связи с таким же атомом из соседних молекул, имеющих неподелённые электронные пары (например, кислородом, азотом и фтором). Ярчайший пример, на котором лучше рассмотреть подобное явление, - это вода. Она, можно сказать, прошита водородными связями, которые слабее ковалентных или ионных, но за счёт того, что их много, оказывают значительное влияние на свойства вещества. По сути, водородная связь - это электростатическое взаимодействие, которое связывает молекулы воды в димеры и полимеры, обосновывая её высокую температуру кипения.

Гидроген в составе минеральных соединений

В состав всех неорганических кислот входит протон - катион такого атома, как водород. Вещество, кислотный остаток которого имеет степень окисления больше (-1), называется многоосновным соединением. В нём присутствует несколько атомов водорода, что делает диссоциацию в водных растворах многоступенчатой. Каждый последующий протон отрывается от остатка кислоты всё труднее. По количественному содержанию водородов в среде определяется его кислотность.

Применение в деятельности человека

Баллоны с веществом, так же как и емкости с другими сжиженными газами, например кислородом, имеют специфический внешний вид. Они выкрашены в темновато-зелёный цвет с ярко-красной надписью «Водород». Газ закачивают в баллон под давлением порядка 150 атмосфер. Физические свойства водорода, в частности легкость газообразного агрегатного состояния, используют для наполнения им в смеси с гелием аэростатов, шаров-зондов и т.д.

Водород, физические и химические свойства которого люди научились использовать много лет назад, на сегодняшний момент задействован во многих отраслях промышленности. Основная его масса идёт на производство аммиака. Также водород участвует в (гафния, германия, галлия, кремния, молибдена, вольфрама, циркония и прочих) из окислов, выступая в реакции в качестве восстановителя, синильной и соляной кислот, а также искусственного жидкого топлива. Пищевая промышленность использует его для превращения растительных масел в твёрдые жиры.

Определили химические свойства и применение водорода в различных процессах гидрогенизации и гидрирования жиров, углей, углеводородов, масел и мазута. С помощью него производят драгоценные камни, лампы накаливания, проводят ковку и сварку металлических изделий под воздействием кислородно-водородного пламени.

Кислород - самый распространенный на Земле элемент. Вместе с азотом и незначительным количеством других газов свободный кислород образует атмосферу Земли. Его содержание в воздухе составляет 20,95% по объему или 23,15% по массе. В земной коре 58% атомов - это атомы связанного кислорода(47% по массе). Кислород входит в состав воды (запасы связанного кислорода в гидросфере исключительно велики), горных пород, многих минералов и солей, содержится в жирах, белках и углеводах, из которых состоят живые организмы. Практически весь свободный кислород Земли возник и сохраняется в результате процесса фотосинтеза.

Физические свойства.

Кислород- газ без цвета, вкуса и запаха, немного тяжелее воздуха. В воде малорастворим (в 1 л воды при 20 градусах растворяется 31 мл кислорода), но всё же лучше, чем другие газы атмосферы, поэтому вода обогащается кислородом. Плотность кислорода при нормальных условиях 1,429г/л. При температуре -183 0 С и давлении 101,325 кПа кислород переходит в жидкое состояние. Жидкий кислород имеет голубоватый цвет, втягивается в магнитное поле, а при -218,7°С, образует синие кристаллы.

Природный кислород имеет три изотопа О 16 , О 17 , О 18 .

Аллотропия- способность химического элемента существовать в виде двух или нескольких простых веществ, отличающихся лишь числом атомов в молекуле, либо строением.

Озон О 3 – существует в верхних слоях атмосферы на высоте 20-25 км от поверхности Земли и образует так называемый «озоновый слой», который защищает Землю от губительного ультрафиолетового излучения Солнца; бледно-фиолетовый, ядовитый в больших количествах газ со специфическим, резким, но приятным запахом. Температура плавления равна-192,7 0 С, температура кипения-111,9 0 С. В воде растворим лучше кислорода.

Озон - сильный окислитель. Его окислительная активность основана на способности молекулы разлагаться с выделением атомного кислорода:

Он окисляет многие простые и сложные вещества. С некоторыми металлами образует озониды, например озонид калия:

К + О 3 = КО 3

Озон получают в специальных приборах - озонаторах. В них под действием электрического разряда происходит превращение молекулярного кислорода в озон:

Аналогичная реакция происходит и под действием грозовых разрядов.

Применение озона обусловлено его сильными окислительными свойствами: он используется для отбеливания тканей, обеззараживания питьевой воды, в медицине как дезинфицирующее средство.

Вдыхание озона в больших количествах вредно: он раздражает слизистые оболочки глаз и дыхательных органов.

Химические свойства.

В химических реакциях с атомами других элементов (кроме фтора) кислород проявляет исключительно окислительные свойства



Важнейшее химическое свойство - способность образовывать оксиды почти со всеми элементами. При этом с большинством веществ кислород реагирует непосредственно, особенно при нагревании.

В результате этих реакций, как правило, образуются оксиды, реже – пероксиды:

2Са + О 2 =2СаО

2Ва + О 2 =2ВаО

2Na + O 2 = Na 2 O 2

Кислород не взаимодействует непосредственно с галогенами, золотом, платиной, их оксиды получаются косвенным путем. При нагревании сера, углерод, фосфор горят в кислороде.

Взаимодействие кислорода с азотом начинается лишь при температуре 1200 0 С или в электрическом разряде:

N 2 + О 2 = 2NО

С водородом кислород образует воду:

2Н 2 + О 2 = 2Н 2 О

В процессе этой реакции выделяется значительное количество теплоты.

Смесь двух объемов водорода с одним кислорода при поджигании взрывается; она носит название гремучего газа.

Многие металлы при контакте с кислородом воздуха подвергаются разрушению - коррозии. Некоторые металлы в обычных условиях окисляются лишь с поверхности (например, алюминий, хром). Образующаяся пленка оксида препятствует дальнейшему взаимодействию.

4Al + 3O 2 = 2Al 2 O 3

Сложные вещества при определенных условиях также взаимодействуют с кислородом. При этом образуются оксиды, а в некоторых случаях - оксиды и простые вещества.

СН 4 +2О 2 =СО 2 + 2Н 2 О

Н 2 S+О 2 =2SО 2 +2Н 2 О

4NН 3 +ЗО 2 =2N 2 +6Н 2 О

4CH 3 NH 2 + 9O 2 = 4CO 2 + 2N 2 + 10H 2 O

При взаимодействии со сложными веществами кислород выступает в качестве окислителя. На окислительной активности кислорода основано его важное свойство- способность поддерживать горение веществ.

С водородом кислород образует также соединение – пероксид водорода Н 2 О 2 – бесцветная прозрачная жидкость со жгучим вяжущим вкусом, хорошо растворимая в воде. В химическом отношении пероксид водорода очень интересное соединение. Характерна его малая устойчивость: при стоянии медленно разлагается на воду и кислород:

Н 2 О 2 = Н 2 О + О 2

Свет, нагревание, присутствие щелочей, соприкосновение с окислителями или восстановителями ускоряют процесс разложения. Степень окисления кислорода в пероксиде водорода = - 1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0), поэтому пероксид водорода проявляет окислительно-восстановительную двойственность. Окислительные свойства пероксида водорода выражены гораздо сильнее, чем восстановительные, и проявляются они в кислой, щелочной и нейтральной средах.

H 2 O 2 + 2KI + H 2 SO 4 = K 2 SO 4 + I 2 + 2H 2 O