Пластиковая история: от расцвета до заката: Полимеры. Кто изобрел пластмассу? История пластических материалов

Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих («поли») частей («мерос»), каждая из которых представляет собой мономерную, то есть состоящую из одной («монос») части, молекулу. Проще говоря, полимеры — это разветвленные цепочки из обычных молекул, мономеров.

Так выглядит процесс выработки пластика сегодня


На наших глазах вилка исчезает


Как растят суперпластик Ученые создали генетически модифицированное растение, в семенах которого содержится органический полимер PHBV. Из него делают саморазрушающийся термопластик. Некоторые виды бактерий вырабатывают полимеры вроде PHBV, используя их как хранилище энергии, как крахмал у растений или гликоген у животных

В XX веке человечество пережило синтетическую революцию. Ее главным завоеванием можно смело назвать изобретение пластика. Сейчас даже трудно представить себе, что еще в начале прошлого века его просто не существовало и все вокруг делалось из модных нынче натуральных материалов.

Игра в мяч

Человечество, можно сказать, доигралось до изобретения пластика. В истории этого материала прослеживается мистическая связь с любовью людей к игре с мячом. Во II веке до нашей эры греки играли в мяч из желчного пузыря свиньи, наполненного воздухом. Этот спортивный снаряд по форме напоминал яйцо или, если угодно, мяч для регби. Уже тогда наши предки искали способ исправить форму мяча и сделать его абсолютно круглым. Древние греки без конца пробовали различные растительные добавки, чтобы придать стенкам свиного пузыря эластичность.

Индейцы майя делали мяч из кожуры плодов, обернутой в натуральный каучук, который они добывали из фикусов. Похожую технологию использовали жители островов Океании и Юго-восточной Азии. До ума, впрочем, ее довели только европейцы. В XIX веке из Малайзии в Европу было привезено гуттаперчевое дерево, из млечного сока которого стали добывать гуттаперчу. Первым изделием из нового материала стали шары для гольфа (а вовсе не цирковые мальчики). Сегодня этот материал используют для изоляции подводных и подземных кабелей и производства клеев.

От мяча эстафетная палочка перешла к бильярду. В 1862 году британский химик Александр Паркес решил придумать дешевый заменитель дорогостоящей слоновой кости, из которой делались бильярдные шары. Результатом стало открытие первого пластификатора.

Сперва Паркес изобрел нитроцеллюлозу. Однако ее свойства не подходили для игральных шаров, так как материал оказался легкобьющимся. Нужна была добавка, которая смягчила бы его, не уменьшив главное полезное свойство — упругость. Паркес решил добавить камфору. Смесь нитроцеллюлозы, камфоры и спирта подогревалась до текучего состояния, далее заливалась в форму и застывала при нормальном атмосферном давлении. Так на свет появился паркезин — первый полусинтетический пластик. Увы, как это часто бывает, его первооткрыватель не добился коммерческого успеха.

Зато последователь Паркеса, американец Джон Хайт, заработал на первом пластике целое состояние. Он основал компанию и стал производить расчески, игрушки и массу других изделий из целлулоида. К сожалению, материал оказался высоковоспламеняемым, поэтому сейчас из него делают лишь шарики для настольного тенниса да школьные линейки.

В 1897 году немецкие химики открыли казеин — протеин, образующийся при сворачивании молока под действием протеолитических ферментов (тех самых веществ, с помощью которых мы перевариваем пищу). Ученые обнаружили, что казеин придает материалам эластичные свойства, а при остывании — твердость и прочность. Из казеина наладили выпуск пуговиц и вязальных спиц.

Первый полностью синтетический пластик был разработан Лео Беикеландом в США в 1907 году. Беикеланд искал синтетический заменитель для шеллака — воскообразного вещества, выделяемого тропическими насекомыми. Его в огромных количествах потребляла граммофонная и электротехническая промышленность: из шеллака делали пластинки и изоляторы. Ученый изобрел жидкое вещество, напоминающее смолу, которое после застывания превращалось в материал с удивительными свойствами. Изделия из него были прочными и не растворялись даже в кислоте. Первые телефонные аппараты были сделаны именно из находки Беикеланда. Пластик мгновенно (менее чем за год) распространился по всему миру.

Начало биоэры

Однако пластик, кроме всех своих замечательных свойств, имеет два важных недостатка. Во‑первых, он производится из невосстанавливаемых природных ресурсов — нефти, угля и газа. Во‑вторых, его главное достоинство — долговечность, — за которым так гнались изобретатели пластика в начале прошлого столетия, сегодня обернулось недостатком. Чем больше пластмассы мы используем, тем быстрее растут горы отходов, которые не разлагаются в среде ни при каких условиях. Миллионы тонн пластика скапливаются в природе, загрязняя окружающую среду.

Поэтому ближе к концу прошлого столетия ученые задумались о том, чтобы создать материал, схожий по свойствам с пластиком. При этом требовалось, чтобы заменитель пластика можно было делать из возобновляемых компонентов (например, растений) и чтоб он был по зубам бактериям, то есть мог разлагаться в природных условиях. В середине 1990-х, как грибы после дождя, стали появляться сенсационные сообщения об изобретении биопластика — пластика из натурального крахмала, разлагающегося под воздействием различных микроорганизмов. Но тогда о крупномасштабном внедрении новшества в нашу повседневную жизнь не могло быть и речи: производство биопластика оказалось слишком дорогим удовольствием.

С наступлением нового века ситуация изменилась кардинальным образом. Ученые нашли способ снизить себестоимость изготовления биопластика и утверждают, что в скором времени она приблизится к стоимости изготовления обычной пластмассы. Более того, некоторые эксперты считают, что цена на разлагаемую пластмассу искусственно завышается коммерческими производителями и нефтяными компаниями (нефтяники не жалуют биопластик потому, что его массовое производство может привести к падению цен на нефть). А ведь, если посчитать затраты на переработку пластмассовых отходов и внести эту цифру в стоимость обычного пластика, еще неизвестно, какой из них будет дороже.

Пластиковые плантации

Обычный пластик не поддается разложению в среде из-за того, что он состоит из слишком длинных полимеров, которые тесно связаны друг с другом. Совсем по‑иному ведет себя пластик, содержащий более короткие натуральные полимеры растений.

Биопластик можно делать из крахмала, который является природным полимером и производится растениями в процессе фотосинтеза. В большом количестве крахмал содержится в злаковых, картофеле и других неприхотливых растениях. Урожай крахмала с кукурузы доходит до 80% от всей собранной зеленой массы. Поэтому производство пластика нового поколения должно стать достаточно рентабельным. Биопластик ломается и крошится при любой температуре, в которой активны микроорганизмы. Остаточными продуктами этого процесса являются двуокись углерода и вода.

Из-за того что крахмал хорошо растворяется в воде, изделия из него легко деформируются при малейшем контакте с влагой. Для того чтобы придать крахмалу большую прочность, его обрабатывают специфическими бактериями, разлагающими полимеры крахмала в мономеры молочной кислоты. Затем химическим способом мономеры заставляют соединиться в цепочки полимеров. Эти полимеры гораздо прочнее, но при этом не так длинны, как полимеры пластмассы, и могут разлагаться микроорганизмами. Полученный материал назвали полилактидом (PLA). В прошлом году в штате Небраска открылся первый в мире завод по изготовлению PLA.

Другой способ получения биопластика заключается в использовании бактерий Alcaligenes eutrophus. В процессе своей жизнедеятельности они производят гранулы органического пластика, получившего название «полигидроксиалканонат» (PHA). Уже были проделаны успешные эксперименты по внедрению генов этих бактерий в хромосомы растений, чтобы те смогли в дальнейшем производить пластик внутри своих собственных клеток. Это означает, что пластик можно буквально выращивать. Правда, такой способ пока остается дорогостоящим. К тому же, так как процесс включает в себя вмешательство на генетическом уровне, он имеет и своих противников.

Кукурузные вилки

Биопластики уже сегодня находят широкое практическое применение во многих странах. Полилактид можно использовать для производства одноразовых подгузников и посуды. Он не вреден для человеческого организма, поэтому не так давно его начали применять в медицине в качестве основы для временных имплантатов и хирургических ниток. «Кукурузные» изделия могут быть сделаны с расчетом на срок самораспада, который требует специфика его употребления. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы.

Итальянская компания Novamont уже давно приступила к выпуску биопластика под названием MaterBi. В Австрии и Швеции McDonald’s предлагает в своих ресторанах «кукурузные» вилки и ножи, компания Goodyear выпустила первые биошины Biotred GT3, а магазины Carrefour во Франции, Esselunga в Италии и CoOp в Норвегии продают свои товары в биопластиковых пакетах из того же MaterBi.

Австралийские ученые из Исследовательского международного центра продовольственной и упаковочной индустрии тоже рекламируют свою продукцию из кукурузного крахмала. Среди новшеств — горшки для рассады, которые саморазлагаются в почве под воздействием влаги, и черная пленка, замечательные свойства которой порадуют любого огородника.

Уже появились идеи производства не просто одноразовых биоупаковок, а пищевых упаковок, которые содержали бы в себе специфичные бактерии, убивающие патогены — возбудителей различных болезней. Одним из самых опасных патогенов является бактерия под названием «листерия». Она развивается в пищевых продуктах даже при низких температурах и может стать причиной смертельной болезни, сопровождающейся высокой температурой и тошнотой. Ученые из Университета Клемсон изобрели биопластик, который содержит бактерии низина, не позволяющие листерии размножаться. Низин представляет собой антибиотик, который вырабатывается молочнокислыми бактериями Streptococcus lactis. Он безвреден для живого организма и быстро разрушается ферментами человеческого кишечника.

Есть и другие не менее интересные проекты. Фантазии исследователям не занимать. Так что вполне может статься, скоро горы мусора из долговечного пластика уйдут в прошлое, а на их месте будут построены заводы по выпуску «кукурузных» пластмассовых изделий.

ИСТОРИЯ Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году. Паркс назвал её паркезин (позже получило распространение другое название - целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (жевательной резинки, шеллака), затем продолжилось с использованием химически модифицированных природных материалов (резина, нитроцеллюлоза, коллаген, галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит, эпоксидная смола, поливинилхлорид, полиэтилен и другие). Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью. В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией. Даниэля Спилла, бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом.

ТИПЫ ПЛАСТМАСС В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на: Термопласты (термопластичные пластмассы) - при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние; Реактопласты (термореактивные пластмассы) - в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств. Также газонаполненные пластмассы - вспененные пластические массы, обладающие малой плотностью.

СВОЙСТВА Основные механические характеристики пластмасс те же, что и для металлов. Пластмассы характеризуются малой плотностью (0, 85- 1, 8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическимрастворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методамисополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др. , а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

ПОЛУЧЕНИЕ Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или пол иприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много» , например этилен-полиэтилен).

СИСТЕМА МАРКИРОВКИ ПЛАСТИКА Для обеспечения утилизации одноразовых предметов в 1988 году Обществом Пластмассовой Промышленности была разработана система маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3 -х стрелок в форме треугольника, внутри которых находится число, обозначающая тип пластика. Часто при маркировке изделий под треугольником указывается буквенная маркировка (в скобках указана маркировка русскими буквами)

Международные универсальные коды переработки пластмасс. Значок. Англоязычное название. Русское название. Примечание. PET или PETEПЭТ, ПЭТФ Полиэтилентерефталат. Обычно используется для производства тары для минеральной воды, безалкогольных напитков и фруктовых соков, упаковки, блистеров, обивки. PEHD или. HDPEПЭНД Полиэтилен высокой плотности, полиэтилен низкого давления. Производство бутылок, фляг, полужёсткой упаковки. Считается безопасными для пищевого использования. PVCПВХ Поливинилхлорид. Используется для производства труб, трубок, садовой мебели, напольных покрытий, оконных профилей, жалюзи, изоленты, тары длямоющих средств и клеёнки. Материал является потенциально опасным для пищевого использования, поскольку может содержатьдиоксины, бисфенол А, ртуть, кадмий. LDPE и PELDПЭВД Полиэтилен низкой плотности, полиэтилен высокого давления. Производство брезентов, мусорных мешков, пакетов, пленки и гибких ёмкостей. Считается безопасным для пищевого использования. PPПП Полипропилен. Используется в автомобильной промышленности (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Распространены полипропиленовые трубы для водопроводов. Считается безопасным для пищевого использования. PSПС Полистирол. Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол. OTHER или ОПрочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. В основном это поликарбонат. Поликарбонат может содержать опасный для человека бисфенол Используется для изготовления твёрдых прозрачных изделий, как например детские рожки.

МЕБЕЛЬНЫЕ ПЛАСТМАССЫ Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже. Мебельный пластик состоит из нескольких слоёв. Защитный слой - оверлей - практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой - декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой - компенсирующий (крафтбумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика. Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1 -3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

ПЛАСТИКОВЫЕ ОТХОДЫ И ИХ ПЕРЕРАБОТКА Скопления отходов из пластмасс образуют в Мировом океане под воздействием течений особые мусорные пятна. На данный момент известны пять больших скоплений мусорных пятен - по два в Тихом и Атлантическом океанах, и одно - в Индийском океане. Данные мусорные круговороты в основном состоят из пластиковых отходов, образующихся в результате сбросов из густонаселённых прибрежных зон континентов. Руководитель морских исследований Кара Лавендер Ло из Ассоциации морского образования (англ. Sea Education Association; SEA) возражает против термина «пятно» , поскольку по своему характеру - это разрозненные мелкие куски пластика. Пластиковый мусор опасен ещё и тем, что морские животные, зачастую, могут не разглядеть прозрачные частицы, плавающие по поверхности, и токсичные отходы попадают им в желудок, часто становясь причиной летальных исходов . Взвесь пластиковых частиц напоминает зоопланктон, и медузы или рыбы могут принять их за пищу. Большое количество долговечного пластика (крышки и кольца от бутылок, одноразовые зажигалки) оказывается в желудках морских птиц и животных, в частности, морских черепахах и черноногих альбатросов. Помимо прямого причинения вреда животным, плавающие отходы могут впитывать из воды органические загрязнители, включая ПХБ (полихлорированные бифенилы), ДДТ (дихлордифенилтрихлорметилметан) и ПАУ (полиароматические углеводороды). Некоторые из этих веществ не только токсичны - их структура сходна с гормоном эстрадиолом, что приводит к гормональному сбою у отравленного животного. Пластиковые отходы должны перерабатываться, поскольку при сжигании пластика выделяются токсичные вещества, а разлагается пластик за 100- 200 лет.

Что за материал используется при производстве пластиковых тар. Чем пластики отличаются друг от друга? Пластмасса

Определить вид пластмассы, если имеется маркировка, достаточно легко - а как быть, если никакой маркировки нет, а узнать, из чего сделана вещь - необходимо?! Для быстрого и качественного распознавания различных видов пластмасс достаточно немного желания и практического опыта. Методика достаточно проста: анализируются физико-механические особенности пластмасс (твердость, гладкость, эластичность и т. д.) и их поведение в пламени спички (зажигалки).Может показаться странным, но различные виды пластмасс и горят по-разному! Например, одни ярко вспыхивают и интенсивно сгорают (почти без копоти), другие, наоборот, сильно коптят. Пластмасса даже издаёт разные звуки при своем горении! Поэтому так важно по набору косвенных признаков точно идентифицировать вид пластмассы, ее марку.

Как определить ПЭВД (полиэтилен высокого давления, низкой плотности) . Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.

Как определить ПЭНД (полиэтилен низкого давления, высокой плотности) . Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение - аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.

Как определить Полипропилен. При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде - прозрачен, при остывании - мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча.

Как определить Полиэтилентерафталат (ПЭТ) . Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб. Обладает хорошей термостойкостью (сопротивление термодеструкции) в диапазоне температур от - 40° до + 200°. ПЭТФ устойчив к действию разбавленных кислот, масел, спиртов, минеральных солей и большинству органических соединений, за исключением сильных щелочей и некоторых растворителей. При горении сильно коптящее пламя. При удалении из пламени самозатухает.

Полистирол . При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный.Полистирол хорошо растворяется в органических растворителях (стирол, ацетон, бензол).

Как определить Поливинилхлорид (ПВХ). Эластичен. Трудногорюч (при удалении из пламени самозатухает). При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу).Растворим в четыреххлористом углероде, дихлорэтане. Плотность: 1,38-1,45 г/см. куб.

Как определить Полиакрилат (органическое стекло). Прозрачный, хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.

Как определить Полиамид (ПА). Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, “пшикает”, образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.

Как определить Полиуретан. Основная область применения - подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе - хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли - липкое, жирное на ощупь вещество. Полиуретан растворим в ледяной уксусной кислоте.

Как определить Пластик АВС . Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.

Как определить Фторопласт-3. Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность: 2,09-2,16 г/см.куб.

Как определить Фторопласт-4. Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Один из лучших диэлектриков! Не горюч, при сильном нагревании плавится. Не растворяется практически ни в одном растворителе. Самый стойкий из всех известных материалов. Плотность: 2,12-2,28 г/см.куб. (зависит от степени кристалличности - 40-89%).

Физико-химические свойства отходов пластмасс по отношению к кислотам

Наименование
отхода
Воздействующие факторы
H 2 SO 4 (к)
Хол.
H 2 SO 4 (к)
Кипяч.
HNO 3 (к)
Хол.
HNO 3 (к)
Кипяч.
HCl (к)
Хол.
HCl (к)
Кипяч.
Бутылки
из-под
кока-колы
Без изменений
Приобрели окраску
Сворачива-ются
Без изменений
Без изменений
Без изменений
Образцы свернулись
Пластико-вые пакеты
Без изменений
Практически растворились
Без изме-нений
Без изменений
Без изменений
Образцы
раствори-лись

Физико - химический свойств отходов пластмасс отходов пластмасс по отношению к щелочам

ЛЮБОЙ пластик выделяет в содержимое бутылки химикаты разной степени опасности.

*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Пластичность - это главное качество пластмассы, ее неотъемлемая часть. Данный материал очень просто в расплавленном виде принимает любую необходимую форму, но когда он застывает, перед наблюдателем предстает прочный монолит. Смесь, изготовленная из клея и наполнителя, уже может считаться пластмассой, хотя под данное правило попадают как бетон, так и ДСП, и даже папье-маше.

Пластмассой можно назвать и всю синтетику, но при ее производстве сверхтонкие волокна для повышения прочности скручиваются в нити, после чего из них изготавливается сотканное полотно.

Пластмасса сегодня является одним из самых популярных материалов в быту. Она обладает малым весом, сравнительно высокой прочностью. Единственным ее недостатком является возможность деформации под действием даже невысоких температур. Производство пластмассовых изделий - достаточно сложный процесс, несмотря на пластичность данного материала.

Как появилась пластмасса

Два века назад ученые всеми силами пытались изобрести заменитель ценных пород дерева и поделочных материалов. Таким образом, на основе высокомолекулярных органических веществ была получена первая пластмасса. Тогда, в 1839 году, Чарльз Гудиер, являющийся высококлассным химиком, проживающий в америке, изобрел эбонит.

Наиболее ранняя форма пластмассы появилась в 1855 году и была названа “паркезин”. Он основан на измененных химическим путем естественных полимерах, а первооткрывателем его стал английский изобретатель Александр Пайрксом.

Вскоре после достижения Пайрксом невероятных результатов в своих исследованиях, химики перешли на использование синтетических молекул в производстве пластмассы. Первыми материалами, которые послужили основой, стали формальдегид и фенол. Случилось это в далеком 1909 году посредством синтеза. Изделие было названо “бакелитовая мастика”, а ее первооткрывателем стал Лео Эндрик Бекеланд.

Во время Второй мировой войны материал получил свое заслуженное коммерческое развитие. Быт людей был разрушен, а на его восстановление стандартными способами требовалось много усилий. На помощь пришла пластмасса. Она намного дешевле известных натуральных материалов, а кроме того, стала основоположником становления новых представлений о домашнем уюте.

В современном мире пластмасса получила настолько широкое распространение, что ее используют даже в автомобильной промышленности. Основная часть этого материала изготавливается из синтетических полимеров.

Широкое распространение пластмасс - одна из отличительных черт нашего времени. Фактически все натуральные волокна, смолы и материалы уже имеют сейчас свои искусственные заменители. Создано множество других веществ с такими свойствами, которые не встречаются в природе. И это, по-видимому, только начало грандиозного переворота, равного по своему значению великим материальным революциям прошлого - освоению и .

Как правило, пластмасса - это сложное органическое соединение, включающее в себя несколько компонентов. Важнейшим из них, задающим основные свойства материала, является искусственная смола. Производство любой пластмассы начинается с приготовления этой смолы. Вообще, смолы занимают промежуточное положение между твердыми и жидкими веществами.

С одной стороны, они имеют многие качества твердых тел, но им также в большой степени свойственна текучесть, то есть способность легко менять свою форму. По своему внутреннему строению смолы также занимают обособленное положение: у них нет жесткой кристаллической решетки, как у большинства твердых тел; они не имеют определенной точки плавления и при нагревании постепенно размягчаются, превращаясь в вязкую жидкость.

Подобно каучуку, к которому они очень близки по своим свойствам, смолы относятся к полимерам, то есть их молекулы состоят из огромного числа одинаковых (часто очень простых по своему строению) звеньев.

Искусственные (синтетические) смолы могут быть получены как результат химической реакции двух типов: реакции конденсации и реакции полимеризации. Во время реакции конденсации при взаимодействии двух или более веществ образуется новое вещество, и при этом еще выделяются побочные продукты (вода, аммиак и другие).

Фенольные смолы, например, получаются из фенола и формальдегида: две молекулы фенола связываются между собой как бы мостиком метиленовой группой, содержащейся в формальдегиде, при этом выделяется вода. Потом эти, уже двойные, молекулы связываются между собой. В конце концов, получается большая молекула линейного или трехмерного строения.

При реакции полимеризации во взаимодействие вступают молекулы одного и того же вещества. Соединяясь между собой, они образуют новое вещество - полимер без выделения побочных продуктов. К реакции полимеризации способны все органические вещества, имеющие в своей молекуле атомы углерода с двойной или тройной связью.

Смола связывает, или, как иногда говорят, цементирует, все составные части пластмассы, придает ей пластичность и другие ценные качества - твердость, водостойкость, механические и электроизоляционные свойства. Помимо смолы во многих типах пластмасс важное место (50-70% массы) занимают так называемые наполнители, которые могут быть как органическими, так и минеральными веществами.

Среди органических наполнителей наиболее важным считается целлюлоза (применяемая в виде , ткани или линтера - хлопковых отчесов; их пропитывают раствором смолы, затем сушат и прессуют). К неорганическим наполнителям относятся слюда, шифер, тальк, асбест, стеклянная ткань и графит.

Как правило, наполнители значительно дешевле смолы, а введение их при правильном подборе - почти не ухудшает свойств пластмасс. Иногда введение удачно подобранного наполнителя даже улучшает качество пластмассы. Его можно улучшить также с помощью специальных добавок и пластификаторов. Первые, взятые даже в небольшом количестве, придают пластмассам новые свойства (например, добавка металла делает из диэлектрика проводящую пластмассу). А пластификаторы, образуя со смолой раствор, смягчают ее и сообщают ей дополнительную пластичность.

Начало производства пластмасс на основе искусственных материалов относится к первой трети XIX века. В 1830 году в Англии была выпущена одна из первых пластмасс - камптуликон. Основу этого слоистого материала составляла джутовая ткань, на которую накатывалась смесь из каучука, измельченной пробки и некоторых других компонентов.

Впрочем, из-за высокой цены на каучук, производство этой пластмассы не получило широкого распространения. В 1863 году англичанин Фредерик Уолтон заменил каучук линоксином и таким образом положил начало производству линолеума. Вплоть до настоящего времени его повсеместно применяют в качестве полового покрытия, так как он стирается гораздо медленнее, чем дерево и даже мрамор.

Начало широкому использованию пластмасс положило изобретение целлулоида, созданного на основе целлюлозы. (Целлюлоза, или клетчатка, составляет основу древесины и других растительных материалов; ее молекула состоит из огромного числа простых по строению звеньев; в очищенном виде это бесцветное, неплавкое и нерастворимое вещество.)

В 1845 году было установлено, что при обработки целлюлозы (хлопковой ваты) азотной и серной кислотами образуется азотнокислый эфир, известный под названием пироксилина. Этот материал очень опасен и в сухом виде взрывается с огромной силой. Однако позже заметили, что во влажном состоянии он совсем не опасен.

Возник вопрос: если вода лишает пироксилин взрывчатой силы, то, может быть, есть и другой способ повлиять на его свойства. Оказалось, что если влажную нитроцеллюлозу смешать с камфарой, то получится пластмасса, которую можно обрабатывать на вальцах, прессовать и формовать. В 1869 году братья Хайет получили, таким образом, целлулоид, который стали производить промышленно с 1872 года.

Целлулоид обладал большой прочностью, был красив и мог окрашиваться в любые цвета или использоваться в качестве прозрачной пленки. Эта пластмасса вскоре получила широчайшее распространение. Из нее стали делать фото - и кинопленку, гребенки, коробки, детские игрушки, пуговицы, пояса. Однако у целлулоида был один важный недостаток - он оказался горюч и очень легко воспламенялся.

В 1872 году немецкий химик Адольф фон Байер путем соединения фенола с формальдегидом в присутствии соляной кислоты синтезировал новое смолообразующее вещество. Из-за отсутствия в то время дешевого формальдегида это открытие не получило промышленного применения.

Лишь в начале XX века стало налаживаться заводское производство фенол-формальдегидовых смол, особенно после того, как в 1908 году американский Химик и изобретатель Лео Хендрик Бакеланд нашел способ производства из того же сырья фенопластов, обладающих способностью при нагревании переходить в неплавкое и нерастворимое состояние. Они приобрели большое техническое значение. Пластмассы на основе этих смол были названы по имени их изобретателя бакелитами.

Сырьем для фенол-формальдегидовых смол служат фенол (карболовая кислота) и формалин (формалин - это раствор газа формальдегида в воде; формальдегид получают искусственно, окисляя метиловый спирт кислородом воздуха при температуре 500-600 градусов). Прежде всего, эти смолы стали применяться как заменитель природной смолы - шеллака для электроизоляции.

Но вскоре оказалось, что они обладают множеством свойств, каких не имели, ни шеллак, ни другие природные смолы. Фенопласты стали быстро завоевывать себе обширные области применения, и долгое время занимали ведущее место среди пластмасс. Изделия из них отличались теплостойкостью, водостойкостью, очень большой механической прочностью и хорошими изоляционными свойствами.

Их широко применяли для изготовления штепселей, розеток, патронов и других предметов электрической аппаратуры, а также в химической промышленности в качестве материала для чанов, резервуаров и труб, используемых в агрессивных средах. Наполнителем в этих пластмассах обычно служила древесная мука.

Позже на основе фенольных смол стали получать такие широко используемые в машиностроении пластмассы, как гетинакс, текстолит и другие. Изделия из них получают горячим прессованием ткани, бумаги или фанеры, пропитанных смолой. Таким образом, можно изготовить очень прочные и легкие детали (например, шестерни или подшипники), с успехом заменяющие металлические.

Причем в отличие от последних, эти детали работают бесшумно и не поддаются разрушительному воздействию смазочных масел. Да и изготовлять их намного проще и дешевле, чем детали из металла. Если же в качестве наполнителя использовать стеклянные нити, образуются пластмассы, обладающие повышенной прочностью.

Еще одной широко распространенной разновидностью пластмасс стали карбамидные пластмассы. Основным исходным материалом для производства карбамидных смол является мочевина. (Мочевина была первым в истории органическим веществом, которое удалось синтезировать искусственным путем; немецкий химик Фридрих Вёлер получил ее в 1828 г. из цианистого калия, сульфата и аммония, но практическое применение она получила только через сто лет.)

В 1918 году чешский химик Джон взял патент на способ изготовления новой смолы из мочевины и формальдегида. Эта смола обладала многими замечательными свойствами: она была бесцветной, прочной, малогорючей, теплостойкой, прекрасно пропускала не только световые, но и ультрафиолетовые лучи (которые не пропускает обычное ) и легко окрашивалась в любые цвета. При этом, правда, она имела один существенный недостаток - поглощала влагу.

Вскоре было положено начало производству карбамидных пластмасс. Они получили распространение как прекрасный отделочный и декоративный материал. К семейству этих пластмасс относится так же мипор, обладающий замечательными тепло - и звукоизоляционными свойствами.

В последующие годы было синтезировано много новых пластмасс. Большое распространение в технике получили прочные прозрачные пластмассы, с успехом заменяющие хрупкое стекло. Наиболее пригодным для этих целей оказался полиметилметакрилат, получаемый из ацетона, синильной кислоты и метилового спирта. Из него производят прочное и легкое органическое стекло. Незаменимым материалом для высокочастотной изоляции стал полистирол (его получают из этилена и бензола).

В 1940 году немецкий химик Мюллер и независимо от него советский ученый Андрианов получили первые силиконовые пластмассы. Молекулы этих пластмасс наряду с углеродом включают в себя кремний. Это сообщает новому виду пластмасс очень ценные свойства: они отличаются высокой теплостойкостью (выдерживают температуру до 400-500 градусов), стойки к воде, кислотам и органическим растворителям. Все это обеспечило им широкую область применения.

Долгое время химикам не удавалось полимеризовать этилен. (Этилен - легкий газ с формулой CH2=CH2.) Только в 1937 году эту проблему удалось отчасти разрешить: под огромным давлением в 1200 атмосфер этилен сжижался, при этом разрывалась двойная связь в его молекуле и начиналась реакция полимеризации. (В результате получалась молекула[-CH2-CH2-]n.)

После того как синтезировалось 10-30% полиэтилена, этилен растворялся в нем, и реакция прекращалась. При понижении давления этилен испарялся и использовался