Переход от сокращенного ионного уравнения к молекулярному. Растворы электролитов

В растворах электролитов реакции происходят между гидратированными ионами, поэтому их называют ионными реакциями. В направлении их важное значение имеют природа и прочность химической связи в продуктах реакции. Обычно обмен в растворах электролитов приводит к образованию соединения с более прочной химической связью. Так, при взаимодействии растворов солей хлорида бария ВаСl 2 и сульфата калия K 2 SO 4 в смеси окажутся четыре вида гидратированных ионов Ва 2 +(Н 2 О)n, Сl - (H 2 O)m, K + (H 2 O)p, SO 2 -4 (H 2 O)q, между которыми произойдет реакция по уравнению:

BaCl 2 +K 2 SO 4 =BaSO 4 +2КСl

Сульфат бария выпадет в виде осадка, в кристаллах которого химическая связь между ионами Ва 2+ и SO 2- 4 более прочная, чем связь с гидратирующими их молекулами воды. Связь же ионов К+ и Сl - лишь незначительно превышает сумму энергий их гидратации, поэтому столкновение этих ионов не приведет к образованию осадка.

Следовательно, можно сделать следующий вывод. Реакции обмена происходят при взаимодействии таких ионов, энергия связи между которыми в продукте реакции намного больше, чем сумма энергий их гидратации.

Реакции ионного обмена описываются ионными уравнения-ми. Труднорастворимые, летучие и малодиссоциированные соеди-нения пишут в молекулярной форме. Если при взаимодействии растворов электролитов не образуется ни одного из указанных видов соединения, это означает, что практически реакции не протекают.

Образование труднорастворимых соединений

Например, взаимодействие между карбонатом натрия и хлоридом бария в виде молекулярного уравнения запишется так:

Na 2 CO 3 + ВаСl 2 = BaCO 3 +2NaCl или в виде:

2Na + +СO 2- 3 +Ва 2+ +2Сl - = BaCO 3 + 2Na + +2Сl -

Прореагировали только ионы Ва 2+ и СО -2 , состояние остальных ионов не изменилось, поэтому краткое ионное уравнение примет вид:

CO 2- 3 +Ba 2+ =BaCO 3

Образование летучих веществ

Молекулярное уравнение взаимодействия карбоната кальция и соляной кислоты запишется так:

СаСO 3 +2НСl=СаСl 2 +Н 2 О+CO 2

Один из продуктов реакции - диоксид углерода СО 2 - выделился из сферы реакции в виде газа. Развернутое ионное уравнение имеет вид:

СаСО 3 +2Н + +2Сl - = Са 2+ +2Сl - +Н 2 O+CO 2

Результат реакции описывается следующим кратким ионным уравнением:

СаСO 3 +2Н + =Са 2+ +Н 2 О+CO 2

Образование малодиссоцированного соединения

Примером такой реакции служит любая реакция нейтрализации, в результате чего образуется вода - малодиссоциированное соединение:

NaOH+НСl=NaCl+Н 2 О

Na + +ОН-+Н + +Cl - = Na + +Сl - +Н 2 О

ОН-+Н+= Н 2 O

Из краткого ионного уравнения следует, что процесс выразился во взаимодействии ионов Н+ и ОН-.

Все три вида реакций идут необратимо, до конца.

Если слить растворы, например, хлорида натрия и нитрата кальция, то, как показывает ионное уравнение, никакой реакции не произойдет, так как не образуется ни осадка, ни газа, ни малодиссоциирующего соединения:

По таблице растворимости устанавливаем, что AgNO 3 , КСl, KNO 3 - растворимые соединения, AgCl - нерастворимое вещество.

Составляем ионное уравнение реакции с учетом растворимости соединений:

Краткое ионное уравнение раскрывает сущность происходящего химического превращения. Видно, что фактически приняли участие в реакции лишь ионы Ag+ и Сl - . Остальные ионы остались без изменения.

Пример 2. Составьте молекулярное и ионное уравнение реакции между: а) хлоридом железа (III) и гидроксидом калия; б) сульфатом калия и иодидом цинка.

а) Составляем молекулярное уравнение реакции между FeCl 3 и КОН:

По таблице растворимости устанавливаем, что из полученных соединений нерастворим только гидроксид железа Fe(OH) 3 . Составляем ионное уравнение реакции:

В ионном уравнении показано, что коэффициенты 3, стоящие в молекулярном уравнении, в равной степени относятся к ионам. Это общее правило составления ионных уравнений. Изобразим уравнение реакции в краткой ионной форме:

Это уравнение показывает, что в реакции принимали участие лишь ионы Fe3+ и ОН-.

б) Составим молекулярное уравнение для второй реакции:

K 2 SO 4 +ZnI 2 = 2KI+ZnSO 4

Из таблицы растворимости следует, что исходные и полученные соединения растворимы, поэтому реакция обратима, не доходит до конца. Действительно, здесь не образуется ни осадка, ни газообразного соединения, ни малодиссоциированного соединения. Составим полное ионное уравнение реакции:

2К + +SO 2- 4 +Zn 2+ +2I - + 2К + + 2I - +Zn 2+ +SO 2- 4

Пример 3. По ионному уравнению: Cu 2+ +S 2- -= CuS составить молекулярное уравнение реакции.

Ионное уравнение показывает, что в левой части уравнения Должны быть молекулы соединений, имеющих в своем составе ионы Cu 2+ и S 2-. Эти вещества должны быть растворимы в воде.

По таблице растворимости выберем два растворимых соединения, в состав которых входят катион Cu 2+ и анион S 2-. Составим молекулярное уравнение реакции между данными соединениями:

CuSO 4 +Na 2 S CuS+Na 2 SO 4

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

2.6 Ионно-молекулярные уравнения

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около 57,6 кДж теплоты:

НСl + NaOH = NaCl + H 2 O + 57,53 кДж

НNO 3 + КОН = КNO 3 + H 2 O +57,61 кДж

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые- в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит):

Н + + Cl - + Na + + ОН - = Na + + Cl - + H 2 O

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы Na + и Cl - не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Н + + ОН - = H 2 O

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Н + + ОН - ↔ H 2 O

Однако, как мы увидим ниже, вода - очень слабый электролит, и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

AgNO 3 + НС1 = AgCl↓ + HNO 3

Ag 2 SO 4 + CuCl 2 = 2AgCl↓ + CuSO 4

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Ag + + NO 3 - + Н + + С1 - = AgCl↓+ Н + + NO 3 -

Как видно, ионы Н + и NO 3 - не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:


Ag + + С1 - = AgCl↓

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами Ag + и С1 - в растворе, так что процесс, выраженный последним уравнением, обратим:

Ag + + С1 - ↔ AgCl↓

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования AgCl из ионов практически доходит до конца.

Образование осадка AgCl будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы Ag + и С1 - .Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов С1 - и, обратно, с помощью хлорид-ионов - присутствие ионов серебра; ион С1 - может служить реактивом на ион Ag + , а ион Ag + - реактивом на ион С1 .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл.2.

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качестве примера несколько реакций, протекающих с участием слабых кислот и оснований.


Таблица 2. Растворимость важнейших солей в воде

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона. Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

СН 3 СООН + NaOH = CH 3 COONa + Н 2 О

Здесь сильные электролиты- гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

СН 3 СООН + Na + + ОН - = СН 3 СОО - + Na + + Н 2 О

Как видно, не претерпевают изменений в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

СН 3 СООН + ОН - = СН 3 СОО - + Н 2 О

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

HNO 3 + NH 4 OH = NH 4 NO 3 + Н 2 О

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Н + + NO 3 - + NH 4 OH = NH 4 - + NH 3 - + Н 2 О

Не претерпевают изменений ионы NO 3 - . Опуская их, получаем ионно-молекулярное уравнение:

Н + + NH 4 OH= NH 4 + + Н 2 О

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

СН 3 СООН + NH 4 OH = CH 3 COONH 4 + Н 2 О

В этой реакции все вещества, кроме образующейся соли,- слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

СН 3 СООН + NH 4 OH =СН 3 СОО - + NH 4 + + Н 2 О

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малодиссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца. Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции:

СН 3 СООН + ОН - ↔ СН 3 СОО - + Н 2 О

Н + + NH 4 OH↔ NH 4 + + Н 2 О

СН 3 СООН + NH 4 OH ↔ СН 3 СОО - + NH 4 + + Н 2 О



С другими растворителями рассмот­ренные закономерности сохраняются, но имеются и отступления от них, например на кривых λ-с часто наблюдается минимум (аномальная электропроводность). 2. Подвижность ионов Свяжем электропроводность электролита со скоростью движе­ния его ионов в электрическом поле. Для вычисления электропро­водности достаточно подсчитать число ионов, ...

При изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики...

17-25 кг/т алюми­ния, что на ~ 10-15 кг/т выше по сравнению с результатами для пес­чаного глинозёма. В глинозёме, используемом для производства алюминия, должно содержаться минимальное количество соединений железа, кремния, тяжелых металлов с меньшим потенциалом выделения на катоде, чем алюминий, т.к. они легко восстанавливаются и перехо­дят в катодный алюминий. Нежелательно также присутствие в...