Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь. Блок защиты галогенных ламп

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Защита лампы накаливания при включении

Предлагаемое простое устройство (рис.1), лишено многих недостатков перед подобными схемами и обеспечивает плавное зажигание бытовой лампы накаливания.

Рис.1

Подбирая соответствующие емкости и диоды, можно здесь подключить лампочку практически любой мощности и любого напряжения без понижающего трансформатора. Например, для сети 220В и 60 - ваттной лампы с теми же полупроводниковыми вентилями нужны конденсаторы, соответственно, по 5 мкФ.

Кружков.В

г. Орел

Ограничитель броска тока при включении лампы

Устройство, собранное по схеме на рис.2, задерживает подачу на лампу полного напряжения сети приблизительно на 0,2 секунды - продолжительность зарядки установленного в нем конденсатора.


Рис.2

Этого вполне достаточно для эффективного ограничения броска тока через холодную спираль лампы. Остаточное падение напряжения на огарничителе - около 5 В.

Первоначально в ограничителе применялись резисторы МЛТ - 0,5, транзистор КТ940А, диода КД105Б, симистора КУ208Г. В дальнейшем в схеме использовались малогабаритные детали, типы которых указаны на схеме, и резисторы меньшей мощности. Такой вариант ограничителя можно смонтировать на печатной плате изображенной на рис.2.

При мощности лампы EL 1 более 100 Вт симистор МАС97 необходимо заменить на более мощным ВТ137 или ВТА12-600. Если такой тиристор снабдить теплоотводом, а вместо транзистора MJE 13001 установить MJE 13003, допустимая мощность нагрузки достигнет 2 кВт. Емкость конденсатора С1 можно увеличить до 470 мкФ.

Штепенко Е.

г. Северодонецк

Луганской обл.

Двухступенчатое включение лампы

Резкое включение лампы накаливания при помощи обычного выключателя вредно как для глаз (резкий скачок света), так и для самой лампы, разрушающее воздействуя на ее нить накала.


Рис.3

Схема показанная на рисунке 3 обеспечивает двухступенчатое включение лампы. При включении S 1, первые 1-2 секунды лампа HL 1 горит в пол накала, потому что через нее протекает ток только одной полуволны сетевого напряжения (через VD 1). Одновременно, начинает заряжаться С1 через VD 2 и R 2, и, примерно, через 1-2 секунды напряжение на нем достигает порога открывания тиристора VS 1, что и происходит. Через тиристор начинает на лампу поступать и вторая полуволна сетевого напряжения, - лампа зажигается в полный накал.

Мизин С.

Чтобы лампа стала «вечной»

Известно, что осветительная лампа чаще всего выходит из строя в момент зажигания. Именно в этот момент сопротивление нити лампы мало (примерно в 10 раз меньше раскаленной), и на ней рассеивается мощность, значительно превышающая номинальную. Нить не выдерживает и перегорает. Особенно часто такое случается с лампами до 500 Вт.

Чтобы продлить срок службы лампы, нужно сначала подать на нее пониженное напряжение и немного разогреть нить лампы, а через некоторое время довести напряжение до номинального. Для этой цели используют автомат двухступенчатой подачи напряжения, который включают последовательно с сетевым выключателем, не нарушая остальной проводки. В квартирах и рабочих помещениях автомат может быть вмонтирован в той же коробке, что и выключатель.

Схема автомата приведена на рис.4.


Рис.4

При налаживании автомата, сначала отключают от деталей анод тиристора VS 1. Подбором резистора R 3 (вместо него удобно временно установить переменный резистор сопротивлением 15 кОм) добиваются на лампе напряжения примерно 200В (точнее всего измерения можно провести прибором тепловой системы) - несколько пониженное по сравнению с сетевым напряжение питания которое продлевает срок службы лампы. Затем измеряют сопротивление введенной части переменного резистора и впаивают в устройство постоянный резистор такого же или ближайшего номинала.

Далее подключают тиристор VS 1 и подбором резистора R 1 добиваются, чтобы тиристор VS 1 открывался раньше VS 2. Это нетрудно определить по зажиганию лампы - сначала она должна гореть «вполнакала». Если автомат работает неустойчиво (лампа мигает), значит установлен очень «чувствительный» тиристор VS 1 (включается при малом токе через управляющий электрод). В этом случае между управляющим электродом и катодом тиристора нужно включить резистор 1…2 кОм либо заменить тиристор.

В схеме можно использовать тиристор VS 1 - любой серии КУ201, КУ202, VS 2 - КУ202К, КУ202Н. Диоды серии КД105Б. С этими деталями автомат способен управлять лампой мощностью до 60 Вт. Если же заменить диоды более мощными, например Д247, и установить их и тиристор VS 2 на радиаторы, автомат можно использовать с лампами мощностью до 1 кВт.

Першиков В.

г. Белорецк

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» - это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

В светодиодных лампочках среднего и высокого ценового сегмента используются .

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный - с гальванической развязкой.

Гальваническая развязка - это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения - они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором - выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения - это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов - релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов - это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор - это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

    Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

    Um - максимально допустимое действующее переменное напряжение (среднеквадратичное);

    Um= — максимально допустимое постоянное напряжение;

    Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

    W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

    Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

    Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим - защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые .

Вот схема его подключения для трёхфазной сети, для однофазной - аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также - параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке - варистор можно расположить в розетке. Варистор можно заменить супрессором.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников - от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками - напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Интересно:

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты .

Внутри расположено три детали, одну из которых мы рассмотрели выше:

1. Варистор.

2. Конденсатор.

3. Резистор.

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Чаще всего лампочка перегорает при включении, когда нить накаливания еще не разогрелась и ей присуще небольшое сопротивление. Чтобы избежать такого развития событий, придумано аппаратное устройство - блок защиты ламп (его еще называют устройством плавного пуска). Главная задача блока - предотвратить ущерб, причиняемый лампочке в результате скачков напряжения в сети.

Причины перегорания ламп

Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.

Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, - склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.

В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.

Принцип работы блока

Блок защиты запускается последовательно с прибором освещения и ограниченно пропускает электричество. Увеличение тока осуществляется постепенно - в течение 1–2 секунд. Без блока ток поступает мгновенно, что часто приводит к перегоранию лампы.

Устройство блока простейшее. Для его функционирования не имеют значения вход-выход, фаза-земля, а также полярность. Устройство следует подключать в последовательном режиме с выключателем, установленным в разрыв фазы.

Прибор плавного включения позволяет:

  1. Избежать негативного влияния перепадов напряжения при подключении светильника.
  2. Стабилизировать ток в лампочках после воздействия на них пускового электричества.
  3. Продлить срок службы источника света.

Немаловажный плюс защитного прибора состоит в том, что он предотвращает мигание лампы. Благодаря этому находиться в освещенном помещении комфортно, так как на глаза не оказывается чрезмерной нагрузки.

Установка и подключение

Монтаж защитного блока обычно осуществляется на потолке, то есть там, где закреплены приборы освещения. Если лампочка не единственная, устройство плавного пуска устанавливают до первого источника света.

Также блоки размещают в монтажных коробах под переключателем света. Однако следует иметь в виду, что для размещения блока в монтажной коробке существует ограничение: максимальная мощность устройства не должна превышать 300 Вт.

Обратите внимание! Какое бы место для установки блока ни было выбрано, к устройству должен быть обеспечен беспрепятственный доступ для проведения ремонтных работ.

Типичная схема подключения блока показана на рисунке ниже.

В случае с переключателем с подсветкой параллельно блоку подключают резистор. Уровень сопротивления для резистора должен находиться в пределах 33–100 кОм, а мощность - не превышать 2 Вт.

Для ламп на 12 вольт также необходим блок защиты. При использовании электромагнитного трансформатора блок ставят в разрыв первичной обмотки. Для электронного трансформатора понадобится специальный блок с четырьмя вводами.

Уровень мощность блока выбирается исходя из суммарной мощности всех потребителей. При этом необходим некоторый запас мощности, обычно в пределах 50% от номинала всех приборов освещения.

Для нормальной работы защитного блока необходимо его охлаждение. Чтобы добиться поступления воздуха, в корпусе создают специальные отверстия.

Меры предосторожности

При перегорании лампочки происходит размыкание нити накаливания, что ведет к короткому замыканию. Вследствие этого существует опасность выхода из строя защитного блока. Чтобы не допустить этого, выполняют следующие действия:

  1. Защитное устройство устанавливают на максимально доступном участке (подрозетник или щиток). До потолочного блока добраться будет значительно сложнее.
  2. Устанавливают по выделенному автоматическому выключателю на каждую линию. Номинальный показатель выключателя подбирается с небольшим запасом, поскольку перепады тока при данном варианте подключения не принимаются во внимание.
  3. Не допускается установка защитного блока в помещениях с повышенным уровнем влажности.

Выбор защитного блока

При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора - мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:

  • «Feron» (КНР);
  • «Camelion» (КНР);
  • «Шепро» (Россия);
  • «Гранит 1000», «Гранит 500» (Беларусь);
  • «Композит» (Россия);
  • «Вжик» (совместное производство России и Китая).

Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:

  • просадки напряжения, что нарушает работу светильника;
  • мигание лампы при подключении и в процессе функционирования;
  • регулярные помехи;
  • среднее качество пайки;
  • экономия на материалах, из которых изготовлен блок.

Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» - более высокую, чем у китайских производителей.

Изготовление блока защиты

Схема плавного подключения к сети лампы накаливания довольно проста. Однако в ходе изготовления блока своими руками следует принимать во внимание некоторые технические нюансы. Также нужно соблюдать нормативные акты, касающиеся электротехнических приборов. В качестве примера ниже приведена схема, по которой работает самостоятельно изготовленный блок защиты.

На схеме, изображенной выше, показано плавное включение лампы накаливания. Причем полярность в расчет не принимается. Прибор подключается в разрыв фазы, чтобы создать последовательное подключение с переключателем. Последний должен быть одноклавишным.

При создании блока также необходимо учитывать такие обстоятельства:

  1. Полевой транзистор в начале работы прибора должен быть закрыт. Данный элемент принимает напряжение стабилизации, так как он включен в диагональ диодного моста.
  2. Конденсатор С1 получает заряд при прохождении напряжения по резистору R1 и диоду VD1 до достижения уровня 9,1 В. Данный уровень является предельным благодаря ограничивающему действию стабилитрона.
  3. Когда напряжение доходит до нужного уровня, транзистор понемногу открывается, что приводит к возрастанию тока и сокращению напряжения на стоке. Далее начинается плавный нагрев нити накаливания лампочки.
  4. Для нормального запуска необходим второй резистор, так как он дает возможность разрядки конденсатора после выключения электропитания светильника. В этот момент напряжение на стоке небольшое - порядка 0,85 В при силе тока около 1 Ампера.

Блок будет работать как в сетях со стандартным напряжением 220 В, так и при пониженном напряжении.

Приборы плавного пуска дают возможность существенно увеличить рабочий ресурс лампочек. Однако их установка сопряжена с соблюдением технических регламентов и требует хотя бы минимальных познаний в электротехнике. Если таковых не имеется, для выполнения монтажа лучше пригласить профессионала.

Автомат защиты ламп от перегорания

Проблема долговечности ламп накаливания, которые порою перегорают в момент включения их в сеть, остается по-прежнему актуальной. О некоторых вариантах ее решения рассказывается в предлагаемых материалах.

...на реле и тринисторе

Известно, что сопротивление нити накаливания осветительной лампы в холодном состоянии значительно меньше по сравнению с сопротивлением нити раскаленной. По этой причине, как только лампу включают, ток через нить значительно превышает номинальный и она иногда перегорает. Такое случается чаще всего в моменты, когда включение лампы совпадает с максимумом полуволны сетевого напряжения.

Один из вариантов продлить "жизнь" лампы - включить последовательно с ней полупроводниковый диод. Тогда вероятность совпадения момента включения с максимумом полуволны уменьшается вдвое - ведь через лампу теперь будет протекать ток только в одном направлении, скажем, при положительных или отрицательных полупериодах.

Так как при таком питании падает световая отдача лампы, нередко используют автоматы, которые после предварительного разогрева нити подают на лампу полное сетевое напряжение. "Пусковой" ток в этом случае менее опасен по сравнению с вариантом подачи напряжения на холодную нить. Так осуществляют двухступенное включение лампы накаливания, способное значительно продлить срок ее службы.

Подобное устройство вполне можно выполнить на более доступных деталях, в частности на реле (рис. 1) вместо транзистора. Оно также представляет собой двухполюсник, а потому легко встраивается в существующую электропроводку. Но в отличие от прототипа обеспечивает не плавное ограничение тока, протекающего через лампу в момент включения ее в сеть, а ступенчатое: сначала через нить накала протекает только одна половина полуволн переменного тока, а спустя некоторое время - обе.


рис. 1

Реле К1 срабатывает от тока, протекающего через сетевой выключатель SA1, осветительную лампу EL1, обмотку реле, диод VD3 (или замыкающуюся группу контактов К1.1).

Работает устройство так. После замыкания контактов SA1 через лампу проходят лишь положительные полуволны тока. При этом диод VD1 закрыт, поскольку контакты К1.1 пока еще разомкнуты. Конденсатор С1 постепенно заряжается через лампу и диод VD2, и как только напряжение на нем достигнет определенного значения, сработает реле К1, контакты К1.1 которого зашунтируют диод VD3. В результате горевшая сначала "вполнакала" лампа EL1 вспыхнет ярким светом. Задержка выхода на такой режим зависит в основном от емкости конденсатора и сопротивления обмотки реле.

Поскольку обмотка реле включена последовательно с лампой, ее сопротивление должно быть согласовано с мощностью лампы. Если будет использовано одно из распространенных автомобильных реле с обмоткой сопротивлением 85 Ом, лампа может быть мощностью от 40 до 100 Вт. Тогда с лампой мощностью 40 Вт на обмотке реле будет падать напряжение примерно 7 В, 60 Вт - 10В, 100 Вт- 16 В.

При любом из этих напряжений малогабаритные автомобильные реле 111.3747, 112.3747, 113.3747, 113.3747-10, 114.3747-10, 114.3747-11, 116.3747-10, 116.3747-11, 117.3747-10, 117.3747-11, рассчитанные на номинальное напряжение 12В, будут уверенно срабатывать. Выводы реле маркированы так: 85 и 86 - обмотка, 30 и 87 - нормально разомкнутая группа контактов.

Из реле общего применения можно рекомендовать для ламп мощностью 40- 100 Вт РЭС10 паспорт РС4.524.304, РС4.524.302, РС4.524.308 (два последних - только для ламп 40 и 60 Вт) и РЭС9 паспорт РС4.524.202, РС4.524.203. С конденсатором С1 емкостью 4000 мкф время задержки срабатывания реле достигает 1 с, что обеспечивает нужный предварительный прогрев нити лампы. Причем переключение лампы на полную мощность происходит почти незаметно для глаз. Вообще же, практика показывает, что для надежной защиты ламп вполне достаточно 100 мс , поэтому рекомендуемое иногда в литературе время 2...4 с и даже 5...10 с явно избыточно. Ведь прогрев лампы накаливания происходит с очень малой постоянной времени,

Если сетевой выключатель должен коммутировать не одну, а несколько ламп (например, лампы люстры), их цепи следует разделить, как показано на рис. 2. Лампа EL1 остается включенной по-прежнему через обмотку реле, a EL2 и EL3 - через диод VD3 и контакты К1.1 реле. Мощность дополнительных ламп ограничена лишь максимальным током диода VD3 и допустимым током через контакты. В этом варианте наибольшее предпочтение следует отдать автомобильному реле, контакты которого выдерживают ток до 30 А (правда, лишь при напряжении 12 В).


рис. 2

Возможен и бесконтактный способ коммутации цепей осветительных ламп, если использовать тринистор (рис. 3). После замыкания контактов сетевого выключателя SA1 вначале через лампу и диод VD2 проходят лишь отрицательные полуволны и лампа горит "вполнакала". Спустя примерно секунду конденсатор С1 заряжается через диод VD1 и резистор R1 до напряжения открывания тринистора и через лампу начинают проходить и положительные полуволны сетевого напряжения - лампа вспыхивает на полную яркость.


рис. 3

Мощность лампы (или группы ламп, соединенных параллельно) ограничена предельными токами диода VD2 и тринистора. Если тринистор работает без теплоотвода, мощность лампы (или ламп) не должна превышать 200 Вт.

Диоды в рассмотренных устройствах могут быть КД105Б-КД105Г, КД209А- КД209В, Д226Б, КД226В-КД226Д. Вместо тринистора КУ202Н подойдет КУ202Л или КУ201Л.

Литература

1. Вугман С.М., Киселева Н.П., Литвинов B.C., Токарева А.Н. О работе лампы накаливания в схеме однополупериодного выпрямления. - Светотехника, 1988, № 4, с. 8-10.

2. Банников В. Защита электроосветительных приборов. - Радио,1990, № 12, с. 53.

3. Бжевский Л. Светорегулятор с выдержкой времени.- Радио,1989,№ 10,с.76.

4. Нечаев И. Регулируем яркость светильника. - Радио, 1992, № 1, с. 22, 23.

...на симисторе

Воспользовавшись свойством симистора пропускать оба полупериода сетевого напряжения, можно собрать по приведенной схеме сравнительно простой автомат, способный ограничить первоначальный бросок тока через холодную нить осветительной лампы. Автомат рассчитан на работу с осветительными приборами общей мощностью до 1500 Вт.

Ограничитель мощности, обеспечивающий двухступенное включение лампы, работает так. При замыкании контактов сетевого выключателя SA1 ток в отрицательные полупериоды напряжения протекает через лампу EL1, дроссель L1, диод VD1, ограничительный резистор R1 и цепь управляющего электрода симистора. Симистор открывается для этих полупериодов, и лампа горит "вполнакала".

Одновременно в эти полупериоды через резистор R2 заряжается конденсатор С1. Спустя 1...2 с, когда нить лампы уже прогреется, конденсатор С1 зарядится до такого напряжения, при котором симистор будет открываться и в положительные полупериоды сетевого напряжения - яркость лампы возрастет до нормальной.

Для снижения уровня радиопомех в сети, возникающих при работе симистора, установлен фильтр из дросселя L1 и конденсатора С2. Если помехи не лимитируют, указанные детали фильтра устанавливать необязательно.

Симистор КУ208Г в устройстве вполне заменит КУ208В. Резисторы - МЛТ-0,5, конденсатор С1 - К50-16, С2 - К73-16, К73-17 или другой на номинальное напряжение не менее 400 В. На месте диода VD1, кроме указанного на схеме, можно установить Д226А, КД109Б, КД221В или другой с обратным напряжением не менее 300 В. Дроссель наматывают на отрезке стержня диаметром 8 или 10 мм и длиной 60...70 мм из феррита 600НН или 400НН, его обмотка (виток к витку в один ряд) содержит 50...60 витков провода ПЭВ-2 1,0.

Налаживание устройства сводится к подбору резистора R2 в зависимости от порога открывания примененного симистора. Для этого к устройству подключают нагрузку, с которой будет работать автомат, а вместо резистора R2 временно подпаивают переменный резистор сопротивлением более 300 Ом. Перемещая движок резистора и подавая выключателем SA1 напряжение, подбирают такое сопротивление резистора, при котором лампа EL1 загорается полным накалом через 1...2 с после включения. Затем на место R2 впаивают постоянный резистор такого (или возможно близкого) сопротивления.

Поскольку автомат выполнен в виде двухполюсника, его детали можно расположить в корпусе светильника или люстры без прокладки дополнительных проводов. Если суммарная мощность ламп люстры превышает 300 Вт, симистор устанавливают на радиатор с поверхностью охлаждения не менее 100 см2 .

Смотрите другие статьи раздела .