Полимерные материалы в технологических машинах и оборудовании. Полимерные материалы, применяемые при ремонте

Восстановление деталей полимерными материалами

Применение полимерных материалов при ремонте автомобильной техники по cравнению с другими способами позволяет снизить:

· трудоемкость восстановления – на 20…30 %;

· себестоимость ремонта – на 15…20 %;

· расход материалов – на 40…50 %.

Это обусловлено следующими особенностями их использования:

· не требуется сложного оборудования и высокой квалификации рабочих;

· возможностью восстановления деталей без разборки агрегатов;

· отсутствие нагрева детали;

· не вызывает снижения усталостной прочности восстановленных деталей;

· во многих случаях позволяет не только заменить сварку или наплавку, но и восстанавливать детали, которые другими известными способами восстанавливать практически невозможно или нецелесообразно;

· позволяет миновать сложные технологические процессы нанесения материала и его обработку.

К недостаткам полимерных материалов следует отнести довольно низкую теплостойкость, теплопроводность, твердость и модуль упругости, наличие остаточных внутренних напряжений, изменение физико-механических свойств с изменением температуры и времени работы.

Полимеры – это высокомолекулярные органические соединения искусственного или естественного происхождения.

Пластмассы – композиционные материалы, изготовленные на основе полимеров, способные при заданной температуре и давлении принимать определенную форму, которая сохраняется в условиях эксплуатации. Кроме полимера, являющегося связующим веществом, в состав пластмассы входят: наполнители, пластификаторы, отвердители, ускорители, красители и другие добавки.

Полимеры делят на две группы:

· термопластичные (термопласты) – полиэтилен, полиамиды и другие материалы – при нагревании способны размягчаться и подвергаться многократной переработке;

· термореактивные (реактопласты) – эпоксидные композиции, текстолит и другие материалы – при нагревании вначале размягчаются, а затем в результате химических реакций затвердевают и необратимо переходят в неплавкое и нерастворимое состояние.

Пластмассы применяют для:

· восстановления размеров деталей;

· заделки трещин и пробоин;

· герметизации и стабилизации неподвижных соединений;

· изготовления некоторых деталей и пр.

Пластмассы наносят: намазыванием, газопламенным напылением, вихревым и вибрационным способами, литьем под давлением, прессованием и др.

Наибольшее распространение в ремонтном производстве получили клеевые композиции на основе эпоксидных смол, эластомеры, герметики и анаэробные полимерные составы .

Клеевые композиции бывают холодного и горячего отверждения. В подвижных ремонтных мастерских применяются эпоксидные композиции холодного отверждения, содержащие в своем составе в качестве связующего вязкие эпоксидные смолы, например ЭД-20, ЭД-16, а также наполнители, пластификаторы и отвердители.


Наполнители входят в композиции для повышения вязкости, сближения коэффициентов термического линейного расширения композиций и ремонтируемых деталей, улучшения теплопроводности, удешевления композиции. В качестве наполнителей используют железный и чугунный порошок, алюминиевую пудру, молотую следу, кристаллический графит, тальк, сажу, цемент, асбест и другие материалы. Количество вводимого в композицию наполнителя зависит от его марки и вида и составляет 20…200 % массы смолы.

В качестве отвердителей применяют различные ди- и полиамины жирного и ароматического ряда, низкомолекулярные полиамиды, производные аминов, например отвердители типа ПЭПА – полиэтиленполиамин или АФ-2 – продукт на основе венола, этилендиамина и формалина. Основным недостаткам этих отвердителей является то, что при температурах, близких к 0 0 С, время отверждения композиции исчисляется сутками. Это ограничивает их применение в полевых условиях.

Для быстрого отверждения эпоксидных смол применяют катионную полимеризацию. Эффективным катализатором катионной полимеризации является трехфтористый бор, который позволяет создавать клеевые композиции для восстановления деталей машин при пониженных температурах.

Для понижения хрупкости композиции, повышения ударной вязкости и прочности на изгиб в смолу вводят пластификаторы. В качестве пластификаторов применяют дибутилфталат ДБФ, полиэфирную смолу МГФ-9, полусульфидный каучук-тиокол НВТ-1 и др.

Подбор компонентов для эпоксидных композиций и их количественное соотношение зависят от характера дефекта и условий работы отремонтированных деталей. Составы эпоксидных композиций для заделки трещин, пробоин, восстановления неподвижных соединений и др. приведены в табл. 5.7.

Технология приготовления эпоксидной композиции включает:

· разогрев эпоксидной смолы до жидкого состояния (60…80 0 С) в термо-

шкафу или в емкости с горячей водой;

· добавление небольшими порциями пластификатора (дибутилфталат);

Таблица 5.7

Состав эпоксидных композиций (в частях по массе)

Особенности технологических процессов изготовления поли­мерных материалов зависят от их состава и назначения. Главными технологическими факторами являются определенные температур­ные и силовые, формирующие изделия, для чего применяется раз­личное оборудование. В основном производство складывается из подготовки, дозировки и приготовления полимерных композиций, которые затем перерабатываются в изделия, и обеспечивается стаби­лизация их физико-механических свойств, размеров и формы.

Основные приемы переработки пластмасс: вальцевание, каланд­рирование, экструзия, прессование, литье, промазывание, пропитка, полив, напыление, сварка, склеивание и др.

Смешение композиций - это процесс повышения однородно­
сти распределения всех ингредиентов по объему полимера иногда с дополнительным диспергированием частиц. Смешение может быть периодическим и непрерывным. Конструкция и характер работы смесителей зависят от вида смешиваемых материалов (сыпучие или пастообразные).

Вальцевание - опе­рация, при которой пласт­масса формуется в зазоре между вращающимися валками (рис. 14.2). Пере­рабатываемая масса 2 не­сколько раз пропускается через зазор между валками 1 и 3, равномерно переме­шивается, затем перево­дится на один валок и сре­зается ножом 4. На вальцах непрерывного действия масса не только пропускается через зазор, но и движется вдоль него, а в конце процесса срезается ножом в виде узкой непрерывной ленты.

Вальцевание позволяет доброкачественно смешивать компонен­ты пластмасс с целью получения однородной массы, при этом поли­мер, как правило, переводится в вязкотекучее состояние благодаря повышению температуры при перетирании. При многократном про­пускании массы через вальцы происходит пластификация, т. е. со­вмещение полимера с пластификатором путем ускоренного взаимно­го проникновения. Вальцы позволяют перетирать и дробить компо­ненты пластмасс. Это обеспечивается тем, что при движении в зазо­ре материалы сжимаются, раздавливаются и истираются, поскольку валки могут вращаться с различной окружной скоростью.

Вальцы, на которых происходит окончательная отделка поверх­ности и калибровка, должны иметь гладкую полированную поверх­ность. По характеру работы вальцы бывают периодического и не­прерывного действия, а по способу регулирования температуры - обогреваемые (паром или электричеством) и охлаждаемые (водой).

Каландрирование - процесс образования бесконечной ленты заданной толщины и ширины из размягченной полимерной смеси, однократно пропускаемой через зазор между валками.

Конструкции каландров различаются в основном в зависимости от вида перерабатываемой массы - резиновых смесей или термо­пластов. Валки каландров изготовляют из высококачественного ко­кильного чугуна. Рабочую поверхность валка шлифуют и полируют до зеркального блеска. Валки обогреваются паром через внутрен­нюю центральную полость и периферийные каналы.

Как правило, каландрирование выполняется в комплексе с валь­цеванием в одной технологической линии.

Экструзией называется операция, при которой изделиям из пла­стмасс придают определенный профиль путем продавливания нагре­той массы через мундштук (формообразующее отверстие). Методом экструзии получают профильные (погонажные) строительные изде­лия, трубы, листы, пленки, линолеум, пороизол и многие другие. Размеры поперечного сечения изделий, изготовляемых методом экс­трузии, лежат в большом интервале: диаметр труб 05-250 мм, ши­рина листов и пленок 0,3-1,5 м, толщина 0,1-4 мм. Экструзионными машинами пользуются также для смешения композиций и гранули­рования пластмасс. Применяются экструзионные машины двух ти­пов: шнековые с одним или несколькими шнеками и шприц - машины. Наибольшее распространение нашли шнековые, или чер­вячные, экструдеры (рис. 14.4). Рабочим органом машины является винт (червяк), который осуществляет перемешивание массы и про­движение ее через профилирующую головку (дорн). В машину масса подается в виде гранул, бисера или порошка. Размягчение материала происходит за счет тепла, поступающего от обогревателей, которые устанавливаются в нескольких зонах.

Обогрев J

Рис. 14.4. Схема работы экструзионной машины:

1 - загрузочный бункер; 2 - шнек; 3 - головка; 4 - калибрующая на­садка; 5 - тянущее устройство; б - дорн; 7 - фильтр

SHAPE * MERGEFORMAT

Рис. 14.5. Схема штампования (пресс-формования): а) загрузка пресс-материала; 6) смыкание формы и прессование; в) вытал­кивание изделия; 1 - пресс-материал; 2 - обогреваемая матрица пресс - формы; 3 - обогреваемый пуансон; 4 - ползун пресса; 5 - электрообог­реватель; 6 - изделие; 7 - выталкиватель

Прессованием называют способ формования изделий в обогре­ваемых гидравлических прессах. Различают формование в пресс - формах (рис. 14.5) - при изготовлении изделий из пресс-порошков и плоское прессование в многоэтажных прессах - при изготовлении листовых материалов, плит и панелей. Прессование применяется преимущественно при переработке термореактивных полимерных композиций (фенопласты, аминопласты и др.).

Для прессования строительных листовых материалов и панелей применяют многоэтажные гидравлические прессы усилием от 10 до 50 т, обогреваемые подогретой водой или паром. Прессование на многоэтажных прессах складывается из следующих операций: за­
грузка пресса, смыкание плит, тепловая обработка под давлением, снятие давления, разгрузка. Методом плоского прессования форму­ют древесно-стружечные плиты, бумажные слоистые пластики, тек - столиты, древесно-слоистые пластики, трехслойные клееные панели. В пресс-формах изготовляют детали санитарно-технического и электротехнического оборудования, детали для отделки встроенного оборудования, оконные и дверные приборы, детали строительных машин и механизмов.

Вспенивание - метод изготовления пористых звукотеплоизо­ляционных и упругих герметизирующих пластмасс. Пористая струк­тура пластмасс получается в результате вспенивания жидких или вязкотекучих композиций под влиянием газов, выделяющихся при реакции между компонентами или при разложении специальных до­бавок (порофоров) от нагревания. Вспенивание веществ - стабили­заторов пены путем нагнетания или растворения в полимере газооб­разных и легкоиспаряющихся веществ.

Вспенивание может происходить в замкнутом объеме под дав­лением и без давления, а также в открытых формах или на поверхно­сти конструкции.

Промазыванием называется операция, при которой пластиче­ская масса в виде раствора, дисперсии или расплава наносится на ос­нование - бумагу, ткань, войлок, разравнивается, декоративно обра­батывается и закрепляется. Примером может служить промазной ли­нолеум, павинол, линкруст и др. Наносимая масса разравнивается специальным ножом-раклей, регулирующим толщину слоя и степень вдавливания. Обычно основание движется, а разравнивающий нож неподвижен; регулируется лишь его наклон и зазор. Нанесенная и разровненная масса проходит обычно этап термообработки для раз­мягчения и лучшего сцепления ее с основанием.

Пропитка состоит в окунании основы (ткани, бумаги, волокон) в пропиточный раствор с последующей сушкой. Эта операция осу­ществляется в пропиточных машинах вертикального и горизонталь­ного типа. Методом пропитки получают клеящие пленки (бакелито­вая), декоративные пленки (мочевино-меламиновые), а также полот­нища на основе стеклянных, асбестовых и хлопчатобумажных тка­ней, из которых в дальнейшем получают текстолиты.

Полив - это процесс, при котором пластическая масса распре­деляется тонким слоем на металлической ленте или барабане и, за­твердевая, снимается в виде тонкой пленки. Часто этот процесс свя­зан с испарением растворителей. Таким путем получают, например, ацетилцеллюлозные прозрачные пленки.

Литье. Различаются два вида литья: простое в формы и под дав­лением. При простом литье жидкая композиция или расплав залива­ются в формы и отвердевают в результате реакций полимеризации, поликонденсации или вследствие охлаждения. Примером служат отливка плиток пола из реактопластов, получение органического стекла и декоративных изделий из полиметилметакрилата. Охлажде­нием расплава при простом литье получают некоторые простейшие изделия из полиамидов (поликапролактама).

Литье под давлением применяется при изготовлении изделий из термопластов. Полимер нагревается до вязкотекучего состояния в нагревательном цилиндре литьевой машины (рис. 14.6) и плунжером впрыскивается в разъемную форму, охлаждаемую водой.

Давление, под которым впрыскивается расплав, может достигать 20 МПа. Таким способом изготовляют изделия из полистирола, эфи­ров целлюлозы, полиэтилена, полиамидов. Литье под давлением от­личается быстротой цикла, при этом виде переработки операции ав­томатизированы.

Формованием называют переработку листовых, пленочных, трубчатых пластмассовых заготовок с целью придания им более сложной формы и получения готовых изделий. Формование произ­водят в основном при нагревании. К главным методам формования из листов относят штампование, пневмоформование и вакуум - формование (рис. 14.7).

Рис. 14.7. Схема вакуум-формования: а) негативная форма; б) позитивная форма; в) предварительная вытяжка заготовки пу­ансоном; г) предварительная пневматиче­ская вытяжка заготовки; I-1II - позиции формования; 1 - заготовка; 2 - негатив­ная форма; 3 - стойка; 4 - зажимная рама; 5 - пуансон; 6 - позитивная форма; 7 - формовочная камера

При штамповании из листов вырезают заготовки, нагревают их, помещают в пресс-форму между матрицей и пуансоном и сжимают под давлением до 1 МПа. Таким путем изготовляют детали канали­зационных систем из винипласта, световые колпаки из оргстекла для покрытий промышленных зданий, профильные детали из текстоли - тов для строительных конструкций.

При пмевмо-формовании лист закрепляют по контуру матрицы и нагревают до слабого провисания. Затем нагретым воздухом, сжа­тым до 7-8 МПа, прижимают лист к поверхности матрицы. Разно­видностью этого способа является свободное выдувание. Таким спо­собом получают световые колпаки, емкости, кольца из полиакрила­тов, детали вентиляционных систем и химически стойкой аппарату­ры из поливинилхлорида.

При вакуум-формовании лист закрепляют по контуру полой формы, нагревают и создают разрежение в полости. Под влиянием атмосферного давления лист прижимается к поверхности формы. Таким путем изготовляют детали санитарно-технического оборудо­вания из ударопрочного полистирола, полиакрилатов, виниловых полимеров.

Напыление - способ нанесения на поверхность порошкооб­разных полимеров, которые, расплавляясь, прилипают к ней, а при охлаждении образуют прочную пленку покрытия. Различают газо­пламенное, вихревое и псевдосжиженное напыление. При газопла­менном напылении порошок полимера (полиэтилен, полиамид, по- ливинилбутироль), проходя через пламя, расплавляется и, падая на поверхность каплями, прилипает, образуя слой нужной толщины.

Сварка и склеивание служат для соединения заготовок из пла­стмасс для получения изделий заданной формы. Сварку применяют для соединения термопластических пластмасс - полиэтилена, поливи­нилхлорида, полиизобутилена и др. По способу нагревания соединяе­мых концов различают сварку воздушную (нагретым воздухом), вы­сокочастотную, ультразвуковую, радиационную, контактную.

Склеивание применяют для соединения как термопластичных, так и термореактивных пластмасс. В простейшем случае клеем для термопластичных пластмасс может служить органический раствори­тель, вызывающий набухание стыкуемых концов деталей и их сли­пание при сжатии. Чаще же используют специальные клеи. В зави­симости от условий производства и требуемой скорости соединения применяют клеи холодного и горячего отверждения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Литературный обзор по теме «Полимерные материалы для деталей сель скохозяйственного оборудования» 2

2. Обзор патентных исследований по теме: «Составы и технология полимерных деталей, применяемых в автотракторной и сельскохозяйственной технике» 15

3. Экспериментально-технологическая часть: «Разработка технологической оснастки и технологии изготовления полимерных деталей для комплектования сельскохозя йственного оборудования» 21

Литература 29

1. Литературный обзор по теме «Полимерные материалы для деталей сельскохозяйственного оборудования»

Естественные полимеры, в основном, растительного происхождения (древесина, каучук, льняные, джутовые волокна, смолы и т.д.) используются человеком с древних времен. Однако только в 20 веке, благодаря развитию, прежде всего химии, физики, технологии переработки материалов созданы новые искусственные (синтетические) полимерные материалы, решены принципиальные вопросы глубинного преобразования структуры естественных полимеров и в результате создано огромное количество уникальных материалов. Создана новая обширная область материаловедения - наука о структуре, свойствах и технологии полимеров и пластмасс.

Термин «полимерные материалы» является обобщающим. Он объединяет три обширных группы синтетических материалов, а именно: полимеры, пластмассы и их морфологическую разновидность -- полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ -- мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами. Они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные изотропные материалы с одинаковыми во всех направлениях физическими макросвойствами.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

В качестве связующих при получении полимерных материалов используют синтетические или природные высокомолекулярные соединения, в том числе синтетические смолы, высокомолекулярные соединения или продукты их переработки, например, эфиры целлюлозы, битумы и др.

Смолы, используемые для изготовления пластмасс, могут быть термореактивными или термопластичными, что и определяет их основные технологические и эксплуатационные свойства.

Многие пластмассы (преимущественно, термопластичные) состоят из одного связующего вещества. К таким материалам относится полиэтилен, полистирол, полиамиды, органические стекла, капрон и др. Особенностью термопластичных материалов является их способность размягчаться при нагревании и вновь затвердевать при охлаждении. Причем эти процессы протекают обратимо и происходят одинаково при каждом цикле нагрева и охлаждения. Строение материала при этом не изменяется, в нем не происходит никаких химических реакций.

Термопластичные материалы характеризуются малой плотностью, хорошей формуемостью, устойчивостью к горючесмазочным материалам. Полиэтилен имеет теплостойкость до 50 ?, морозостойкость до -70 ?, химически стоек, однако подвержен старению. Применяется для изготовления пленок, труб, контейнеров, предметов домашнего обихода. Полипропилен имеет более высокие прочностные свойства, но имеет более низкую морозостойкость (до минус 20 ?). Области применения близкие к полиэтилену. Полистирол - твердый прозрачный компактный материал. Используется для изготовления деталей приборов и машин (ручки, корпуса, трубы и др.). Полиуретаны и полиамиды: капрон, нейлон используются для изготовления высокопрочных нитей и пленок. Органические стекла - прозрачные твердые вещества, используются в самолетостроении, автомобилестроении, приборостроении.

К термопластам также относятся фторопласты - уникальные материалы с очень низким коэффициентом трения. Их используют для вентилей, кранов, насосов, втулок, прокладок и др.).

Термореактивные материалы при нагревании размягчаются лишь в начальный период времени, а затем твердеют при температуре нагревания за счет протекания необратимых химических реакций в их структуре, в результате чего такой материал остается твердым и не размягчается при повторных нагревах до достаточно высоких температур. Представителями термореактивных материалов являются фенолформальдегидная, глифталевая, эпоксидная смолы, непредельные полиэфиры и др. Природа протекания химических реакций, приводящих к необратимому затвердеванию, может иметь различный характер. Оно может стимулироваться добавлением в смолы специальных веществ - отвердителей, либо происходить только за счет термической активации - при нагреве. Однако в обоих случаях особенностью термореактивных пластмасс является необратимый характер изменения основных свойств материала.

Основой реактопластов являются термореактивные полимеры. В качестве наполнителей используют различные неорганические материалы. В зависимости от типа наполнителя такие материалы подразделяются на порошковые, волокнистые и слоистые. Порошковые материалы используют в качестве наполнителей древесную или целлюлозную муку, молотый кварц, тальк, цемент, графит и др. Такие пластмассы имеют однородные свойства по всем направлениям, хорошо прессуются. Недостаток - низкая устойчивость к ударным нагрузкам. Применяются для изготовления корпусных деталей приборов, технологической оснастки в литейном производстве (моделей) или слабонагруженных деталей штампов. Волокнистые пластмассы (волокниты) имеют высокие прочностные свойства, особенно, стекловолокниты, поскольку, по существу, они являются композиционными материалами и используют преимущества в свойствах как основы, так и волокон, применяемых для создания этих материалов. Слоистые пластики, как и волокниты, являются композиционными материалами. Они характеризуются наиболее высокими прочностными и, одновременно, пластическими свойствами. Существуют текстолиты (наполнитель - хлопчатобумажная ткань), гетинакс (наполнитель - бумага), древеснослоистые пластики (древесный шпон), стеклотекстолиты (ткань из стекловолокна). Текстолит имеет повышенное сопротивление износу. Может применяться для изготовления зубчатых колес, кулачков, подшипников и других тяжело нагруженных деталей.

В этих материалах есть многое из того, чтобы сделать жизнь человека, окружающий его мир более красивыми, комфортными, благополучными. Полимерные материалами легки (в 5-7 раз легче металлов и сплавов). Расчетами установлено, что замена ряда металлических деталей легкового автомобиля на углепластики из эпоксидной смолы, армированной углеродными волокнами, позволит уменьшить массу машины на 40%; она станет более прочной; уменьшится расход топлива, резко возрастет стойкость против коррозии. Они легко окрашиваются в самые разные цвета, могут быть блестящими и матовыми, прозрачными и полупрозрачными, флуоресцирующими. Эти материалы не разрушаются в условиях действия агрессивных сред, в которых металлоизделия подвержены интенсивной коррозии. Органические полимеры тканьэквивалентны, т.е. по своему химическому строению они близки коже, волосам, тканям мышц человека, что позволяет использовать их в восстановительной хирургии и позволяет создать интерьеры, в которых человек чувствует себя максимально комфортно.

Полимерные материалы легко перерабатываются и поэтому из них без особых затрат можно создавать изделия самой причудливой формы. Благодаря развитию полимерного материаловедения получили развитие новые технологии: склеивание, герметизация изделий и др. Наконец, только полимеры обладают высокоэластичностью -- способностью к большим обратимым деформациям, наиболее ярко проявляемой в каучуках и резинах.

Полимерные материалы весьма ярко внедряются в жизнь, позволяя решать не только технические вопросы, но и эстетические проблемы. Сегодня можно говорить о существовании неких принципов, апробированных положениях, которые надо учитывать при художественном конструировании и создании изделий из пластмасс.

При использовании полимеров удается прямо, просто и эффективно решить и эстетические проблемы и функциональные. Примером может быть эволюция флаконов в парфюмерии или емкостей в медицине, где они одновременно становятся или пульверизаторами или капельницами и т.д.

К основным достоинствам полимерных материалов можно также добавить:

а) высокая технологичность, благодаря которой из производственного цикла можно исключить трудоемкие и дорогостоящие операции механической обработки изделий;

б) минимальная энергоемкость, обусловленная тем, что температуры переработки этих материалов составляют, как правило, 150-250 °С, что существенно ниже, чем у металлов и керамики;

в) возможность получения за один цикл формования сразу нескольких изделий, в том числе сложной конфигурации, а при производстве погонажных продуктов вести процесс на высоких скоростях;

г) практически все процессы переработки полимерных материалов автоматизированы, что позволяет существенно сократить затраты на заработную плату и повысить качество изделий.

Однако, полимерные материалы имеют и некоторые недостатки, которые необходимо учитывать при производстве полимерных изделий.

Полимеры - диэлектрики, они накапливают статическое электричество. В случае, если пластмассовое изделие имеет большие габариты, оно может активно притягивать пыль, грязь, разряжаться на человека при касании. Приходится решать проблемы снятия статического электричества.

При изготовлении пластмассовых изделий не допустим глубокий рельеф фактурной обработки, так как в этих местах накапливается грязь и отмыть ее бывает невозможно.

Полимерное изделие не должно иметь острых углов, граней, узких щелей, выбор материала должен быть сделан с обязательным учетом условий технологии переработки и эксплуатации. Таким образом, полимеры и пластмассы - материалы со специфическими свойствами и возможностями прежде всего потому, что обладают необычными химическим составом и структурой.

Оборудование для переработки пластических масс служит для преобразования исходного полимерного материала в изделия с заранее заданными эксплуатационными характеристиками. Конструирование и изготовление машин и агрегатов для переработки пластмасс осуществляется на предприятиях различных отраслей машиностроения.

Большинство методов переработки пластических масс предусматривает использование процессов формования изделий из полимеров, находящихся в вязкотекучем состоянии, -- литье под давлением, прессование, экструзия и др. Некоторые процессы основаны на достижении материалом в момент формования высокоэластического состояния -- пневмовакуумное формование. В промышленности используются методы формования из растворов и дисперсий полимеров.

Переработка полимерных материалов включает в себя три основные группы процессов: подготовительные, формующие и завершающие.

Процессы подготовительного цикла необходимы для улучшения технологических свойств перерабатываемого сырья, а также для получения полуфабрикатов и заготовок, используемых в основных методах переработки. К таким процессам относятся измельчение, гранулирование, сушка, таблетирование, предварительный подогрев.

Формующие процессы -- это процессы переработки, с помощью которых осуществляется изготовление пластмассовых изделий. Можно выделить две группы этих процессов: непрерывные (экструзия, каландрование) и периодические (литье под давлением, пневмоформование вакуумное, раздувное формование, напыление, прессование и ряд других). Изготовление изделий из стеклопластиков осуществляется методами, разнообразными по аппаратурно-технологическому оформлению. Технологический процесс изготовления изделий из стеклопластиков состоит из следующих операций: подготовка связующего и наполнителя, совмещение связующего и наполнителя, формование изделия.

Завершающие процессы предназначены для придания готовым изделиям определенного внешнего вида, создания неразъемного соединения отдельных элементов пластмассового изделия. К ним относятся процессы механической обработки изготовляемых изделий, окрашивание и металлизация их поверхности, сварка и склеивание отдельных частей.

В последнее время полимерные материалы активно применяются как для изготовления, так и для восстановления деталей для сельскохозяйственного оборудования. Пластмассы в ремонтной практике наносят на поверхности деталей для восстановления их размеров, повышения износостойкости и улучшения герметизации. Одновременно покрытие из пластмассы снижает шум от трения и повышает коррозионную стойкость изделия. Тонкий слой пластмассы практически не ухудшает прочностных показателей металла и придает детали податливость, т.е. способность принимать форму сопряженной детали, что приводит к резкому увеличению площади контакта. Пластмассы наносят литьем под давлением, горячим прессованием, вихревым, газопламенным и центробежным способами.

Ремонт сельхозтехники полимерными материалами по сравнению с другими способами, дает возможность восстановить детали с высоким качеством и снизить:

трудоемкость - на 20-30%;

затраты материалов - на 40-50%;

себестоимость работ - на 15-20%.

При восстановлении деталей наибольшее распространение получили акриловые и полиамидные пластмассы, текстолит, древеснослоистые пластики. Текстолит и древеснослоистые пластики применяются для восстановления изношенных поверхностей направляющих станков, изготовления зубчатых колес, подшипников скольжения, втулок и других деталей с трущимися рабочими поверхностями.

При ремонте широко применяют акриловые пластмассы, содержащие в качестве связующих материалов акриловые смолы - продукты полимеризации метилметакрилата и сополимеризации метилметакрилата со стиролом. К ним относятся: актилат АТС-1, бутакрил, эпоксидно-акриловые пластмассы СХЭ-2 и СХЭ-3.

Эти термопластические быстротвердеющие пластмассы холодного отверждения получают смешиванием порошка и жидкости. Изготовленная масса, имеющая консистенцию сметаны, затвердевает без подогрева и давления.

Такие пластмассы используют при восстановлении изношенных изделий в качестве компенсатора износа для восстановления нарушенных размерных цепей станков и машин. С помощью пластмасс восстанавливают: круговые направляющие станин карусельных станков, регулировочные клинья и прижимаемые планки механизмов всех видов оборудования, в том числе механических прессов. Их также используют для ремонта подшипников шпинделей револьверных головок токарно-револьверных станков; отверстий, втулок, посадочных мест зубчатых колес и шкивов; деталей гидронасосов; кулисных механизмов и других деталей металлорежущего оборудования. Раствор пластмассы применяют и при склеивании материалов.

Затвердевшая пластмасса износостойка, хорошо работает в паре с чугуном, сталью, бронзой, коэффициент трения при отсутствии смазочного материала 0,20-0,18, а при введении в композицию требуемого количества антифрикционных добавок уменьшается до 0,143. Пластмассы с такими добавками могут работать без смазки.

Затвердевшая пластмасса стойка к щелочам любой концентрации, бензину, скипидару, пресной и морской воде, минеральным и растительным маслам. Слой пластмассы можно удалить нагреванием до 150-200С и дальнейшим выжиганием или обработкой резанием.

Вязкость пластмасс изменяют в зависимости от их назначения. Для этого в раствор пластмассы вводят порошкообразные, волокнистые и слоистые наполнители из металлических и неметаллических материалов.

Для повышения эксплуатационных свойств (уменьшения коэффициента трения и увеличения износостойкости) в пластмассу вводят (до 10%, массовая доля) порошок графита.

В ремонтной практике распространение получил капрон марок А и В. Это твердый материал белого цвета с желтым оттенком, имеющий высокую прочность, износостойкость, масло- и бензостойкость, а также хорошие антифрикционные свойства. Основными недостатками капрона являются низкая теплопроводность, теплостойкость и усталостная прочность. Максимально допустимая рабочая температура капроновых покрытий не должна превышать плюс 70-80°С и минус 20-30°С.

Покрытием из капрона ремонтируют поверхности втулок, валов, вкладышей и других деталей.

Рисунок 1. Схема нанесения капрона на изношенную поверхность детали литьем под давлением: 1 - верхняя часть пресс-формы; 2 - литниковый канал; 3 - нижняя часть пресс-формы; 4 - ремонтируемая деталь; 5 - слой капрона

Ремонт изношенных поверхностей деталей с применением капрона в большинстве случаев производят литьем под давлением на специальных литьевых машинах. Сущность процесса состоит в том, что на специально подготовленную изношенную поверхность детали наносят под давлением слой капрона. Изношенную деталь устанавливают в пресс-форму (рис. 1) и в образовавшийся зазор между деталью и стенкой пресс-формы нагнетают под давлением расплавленный капрон. Затем пресс-форму раскрывают, снимают деталь, удаляют с неё литники и облой. При необходимости капроновое покрытие механически обрабатывают до получения требуемых размеров. Для улучшения качества готовую деталь термически обрабатывают в ванне с маслом при температуре 185-190°С и выдерживают при этой температуре в течение 10-15 мин.

При нанесении капрона его нагревают до 240--250°С и подают под давлением 4-5 МПа (40-50 кгс/см). Пресс-форму совместно с деталью предварительно подогревают до температуры 80-100°С. Толщина покрытия рекомендуется от 0,5 до 5 мм. Литьё под давлением проводится на термопласт-автоматах, литьевых машинах и др. Этот способ технологически прост, не требует достаточно сложного оборудования и оснастки.

Капрон (в виде порошка размером 0,2-0,3 мм) можно наносить на поверхность детали напылением. Сущность этого способа состоит в том, что на подготовленную и подогретую поверхность детали наносится порошкообразный капрон. Ударяясь о разогретую деталь, частицы порошкообразного капрона плавятся, образуя пластмассовое покрытие.

Во время ремонта неподвижных соединений подшипников качения часто применяют эластомер ГЭН-150В и герметик 6Ф. Первый состоит из нитрильного каучука СКП-40С и смолы ВГУ. Второй - это продукт сочетания бутадиеновый каучук СКП-40 с смолой ФКУ на основе замещено фенолавинилацетатной смолы. Поверхности деталей перед нанесением покрытия зачищают механическим способом и обезжиривают.

Покрытие наносят по-разному: обливанием, кистью, центробежным способом - в зависимости от конструкции деталей и средств нанесения. Термообработку покрытия из раствора ГЭН-150В осуществляют при температуре 115 ? в течение 40 мин, из раствора герметика 6Ф - при температуре 150 ... 160 ? в течение трех часов. Долговечность неподвижных соединений зависит от скорости срабатывания. Основная причина срабатывания посадочных мест без полимерного покрытия - фреттинг-коррозия. Характер износа существенно изменяется по посадке подшипников с покрытием раствором герметика 6Ф. Полимерное покрытие полностью предотвращает металлический контакт и развитие фреттинг-коррозии, а это существенно снижает интенсивность потери дееспособности посадочных мест, особенно в корпусных деталях.

Важное значение для восстановления дееспособности чугунных корпусных деталей с трещинами имеют клеевые композиции на основе эпоксидной смолы. Главный связующий компонент этих составов - эпоксидная смола марки ЭД-6 или ЭД-5. Чаще применяют смолу ЭД-6. Это прозрачная вязкая масса светло-коричневого цвета. Для приготовления состава на основе смолы ЭД-6 на 100 частей (по массе) смолы вводят 10-15 частей дибутилфталата (пластификатор), до 160 частей наполнителя и 7-8 частей полиэтиленполиамина (отвердитель). В качестве наполнителя используют: железный порошок (160 частей), алюминиевый порошок (25 частей), цемент марки 500 (120 частей). Эпоксидную смолу разогревают в таре до температуры 60-80°С, добавляют пластификатор, затем наполнитель. Отвердитель вводят непосредственно перед употреблением, так как после этого состав необходимо использовать в течение 20-30 мин. Составы на основе эпоксидных смол применяются для ремонта деталей, работающих при температурах от -70 до +120°С. Их применяют для заделки трещин и пробоин в корпусных деталях, для восстановления неподвижных посадок и резьбовых соединений.

При заделке трещин определяют их границы и подготавливают поверхности. Границы трещины обычно засверливают сверлом диаметром 2-3 мм и снимают фаски под углом 60-70° на глубину 2-3 мм вдоль трещины на всей её длине (рис. 2, а). Поверхность зачищают на расстоянии 40-50 мм по обе стороны трещины до металлического блеска и делают насечки. Затем обезжиривают ацетоном.

Заплату вырезают из стеклоткани такого размера, чтобы она перекрывала трещину на 20-25 мм. Состав на основе эпоксидных смол готовят непосредственно перед его применением и наносят кистью или шпателем на поверхности толщиной около 0,1-0,2 мм (рис. 2, б). После этого накладывают заплату и прокатывают роликом (рис. 2, в).

Рисунок 2. Схема заделки трещин: а - разделка поверхности; б - заполнение составом эпоксидной смолы; в - прокатывание накладки роликом; 1 - слой состава; 2 - накладка; 3 - ролик

На поверхность этой накладки снова наносят слой клея, а затем кладут еще одну, которая перекрывает предыдущую на 10-15 мм, прокатывая роликом и наносят еще один слой клеевого покрытия. Для отверждения клеевые покрытия выдерживают 72 ч при температуре 20 °С, или 3 часа при температуре 100 °С. В процессе эксплуатации на корпусные детали действуют значительные знакопеременные механические и температурные нагрузки, которые приводят к отслоению покрытия и потери деталями требуемой герметичности. Чтобы избежать нежелательного расслоение, применяют металлические накладки и прикрепляют их болтами.

Клеевые материалы не только обеспечивают возможность прочного соединения деталей из различных материалов, но также уплотняют зазоры и трещины; герметизируют фонари, окна, шланги и патрубки; изолируют электрические контакты; устраняют вибрацию и шум; применяются для изготовления уплотнений и прокладок любой формы.

Хорошие показатели качества показывает клеесварка крупногабаритных тонкостенных конструкций. Область эта - абсолютно новая для России и всех стран СНГ. Дело в том, что тонкостенные конструкции, панели кузовов сельхозмашин после выполнения контактной точечной сварки до сих пор герметизируют с помощью различных мастик, грунтовок и пластизолей. Это достаточно трудоемкая операция, причем в случае зазоров более 0,5 мм достичь высококачественной герметизации, как правило, не удается. Клеесварная же технология не только обеспечивает хорошую герметизацию сварного шва, но и увеличивает в 1,5 раза прочность соединения.

Соединение выполняется таким образом: на соединяемые поверхности наносится слой клея, затем они накладываются одна на другую и провариваются точечной сваркой. Клеевая прослойка воспринимает большую часть нагрузки, и благодаря этому сварная точка разгружается, улучшается ее работоспособность, что существенно повышает усталостную прочность и жесткость соединения. Вследствие этого число сварных точек можно уменьшить на 30-50 шт. и соответственно снизить трудо- и энергозатраты на сварочные работы.

Клеевые материалы, используемые при данной технологии, представляют собой пастообразные одно- или двухкомпонентные составы. Причем однокомпонентные отверждаются при 410-430К (140-160?), что в ряде случаев делает возможным совместить сушку клея с сушкой нанесенного на готовое изделие лакокрасочного покрытия. Важно и то, что клеесварка не требует предварительной очистки соединяемых поверхностей. Наконец, клеесварная технология сборки решает и вопросы коррозионной защиты сварного шва.

2. Обзор патентных исследований по теме: «Составы и технология полимерных деталей, применяемых в автотракторной и сельскохозяйственной технике»

Произведен обзор патентных исследований на глубину 14 лет (1998-2012г.), по данной теме обнаружено 8 патентов:

В патенте на изобретение № 94903 (дата начала действия патента 22.04.2009) описана полезная модель литьевой пресс-формы, которая относится к литейному производству по получению изделий, в основном, из термопластичного полимера литьем под давлением, преимущественно толстостенных изделий. Техническое решение изобретения может также распространяться и на получение изделий из других материалов.

Задача полезной модели в повышении эффективности применения пресс-формы для литья под давлением. Поставленная задача решается тем, что пресс-форма для литья под давлением, содержащая разъемные части 1 и 2, в одной из которых выполнена формообразующая полость 4 и расположен выталкиватель 5, а в другой выполнено сопло 9. Имеет отличительные признаки: формообразующая полость 4 выполнена с изменяемым объемом при помощи подвижного знака в виде поршня 6, одновременно являющимся выталкивателем. Через поршень 6 может быть пропущен, как минимум, один формообразующий знак 7.

Также возможно выполнение формы поверхности поршня 6 и сопрягаемой с ней поверхности формообразующей полости 4 отличными от цилиндрической.

В патенте на изобретение № 2312766 (дата начала действия патента 30.01.2006) описан способ изготовления вкладыша пресс-формы, в частности к изготовлению вкладышей пресс-форм для получения изделий типа угольник, и может быть использовано в производстве их, как методом прессования, так и методом литья под давлением. Техническим результатом заявленного изобретения является создание способа изготовления вкладыша пресс-форм, позволяющего повысить производительность, качество и точность изготовления, а также позволяющего варьировать форму и размеры рабочей части вкладыша. Технический результат достигается способом изготовления вкладыша пресс-формы, при котором тело вкладыша выполняют продольно-разрезным. Бочкообразную рабочую поверхность его частей - полувкладышей выполняют токарной обработкой из одной заготовки на специально предназначенной для этого оправке. Параметры бочкообразной поверхности выбирают исходя из следующих условий: высота бочки равна диаметру вкладыша, радиус образующей бочки равен половине диаметра вкладыша, радиус экватора бочки больше или равен радиусу образующей бочки, но меньше или равен диаметру вкладыша.

В патенте на изобретение № 2446187 (дата начала действия патента 17.06.2010) описан способ получения полимерного нанокомпозита, включает смешение термопласта с наполнителем - наноалмазом детонационного синтеза (ДНА) в расплаве термопласта в режиме упругой неустойчивости. Для этого выбирают температуру и напряжение сдвига, обеспечивающие значение числа Вайссенберга не менее 10. Соотношение компонентов следующее, мас.%: термопласт - 95-99,5, ДНА - 0,5-5. Изобретение позволяет получить полимерный нанокомпозит с повышенным модулем упругости, твердостью, ударной вязкостью, прочностью на разрыв. Такие материалы могут быть использованы для изготовления корпусов, полимерных пар трения (шестерни, подшипники и т.п.), а также в аэрокосмической отрасли, как обладающие повышенными механическими свойствами и стойкостью к агрессивным средам.

В патенте на изобретение № 2469860 (дата начала действия патента 17.07.2009) описано устройство для изготовления трехмерных объектов посредством затвердевания порошкового или жидкого материала. Сменная рама устройства для изготовления трехмерного объекта (3) содержит раму (1) и платформу (2), расположенную в раме (1) с возможностью вертикального перемещения, при этом рама (1) и платформа (2) образуют рабочее пространство упомянутого устройства. Сменная рама выполнена с возможностью введения в упомянутое устройство и извлечения из него, причем упомянутое устройство предназначено для изготовления трехмерного объекта (3) посредством затвердевания порошкового или жидкого материала (3а), предназначенного для изготовления упомянутого объекта (3) слой за слоем в местах в каждом слое, соответствующих поперечному сечению подлежащего изготовлению объекта (3). На обращенной к рабочему пространству внутренней стороне рама (1) содержит стеклокерамические пластины (13). Технический результат заключается в обеспечении нагрева рабочего пространства до высоких температур за счет небольшого коэффициента теплового расширения стеклокерамических пластин.

В патенте на изобретение № 2470963 (дата начала действия патента 12.06.2009) описаны реакторные термопластичные полиолефины, обладающие высокой текучестью и превосходным качеством поверхности, в состав которых входит (А) матрица из гомо- или сополимера пропилена, массовая доля которого составляет от 40 до 90% с индексом MFR по стандарту ISO 1133 (230°С, при номинальной нагрузке 2,16 кг)? 200 г/10 мин, и (В) эластомерный сополимер этилена и пропилена, массовая доля которого составляет от 2 до 30%, с характеристической вязкостью IV (по ISO 1628 в декалине в качестве растворителя)? 2,8 дл/г с массовой долей этилена более 50 и до 80% и (С) эластомерный сополимер этилена и пропилена, массовая доля которого составляет от 8 до 30%, с характеристической вязкостью IV (по ISO 1628 в декалине в качестве растворителя) от 3,0 до 6,5 дл/г и с массовым содержанием пропилена от 50 до 80%. Реакторные термопластичные полиолефины получают в технологическом процессе многоступенчатой полимеризации, включающем, по крайней мере, 3 последовательных этапа, в присутствии системы катализатора, включающей (i) прокатализатор Циглера-Натта, в состав которого входит продукт трансэстерификации низшего спирта и фталевый эфир сложных кислот, (ii) металлоорганический совместно действующий катализатор, и (iii) внешний донор, представленный формулой (I), Si(OCH2CH3)3(NR lR2), где значения R1 и R2 указаны в формуле изобретения. Также раскрыт многоступенчатый технологический процесс для производства указанных полиолефинов, включающий либо сочетание одного петлевого и двух или трех газофазных реакторов, либо сочетание двух петлевых и двух газофазных реакторов, соединенных последовательно. Полиолефины по изобретению используют для получения изделий литьем под давлением для автомобильной промышленности. Изобретение также относится к формованным изделиям, полученным из реакторных термопластичных полиолефинов. Полиолефины могут использоваться для литья под давлением больших профилей, у которых не появляется «рябь» и который одновременно демонстрирует хороший баланс «ударная вязкость/жесткость» и хорошую текучесть.

В патенте на изобретение № 2471811 (дата начала действия патента 02.10.2008) описан способ получения полимеров пропилена. Полученный полимер пропилена имеет скорость течения расплава (230°С, 2,16 кг) выше 30 г/10 мин. Способ осуществляется в присутствии каталитической системы, включающей (А) твердый каталитический компонент, содержащий Mg, Ti, галоген и электронодонорное соединение, выбранное из сукцинатов; (В) алкилалюминиевый сокатализатор; и (С) соединение кремния формулы R1Si(OR)3 , в которой R1 представляет собой разветвленный алкил и R представляет собой независимо C1-C10 алкил. Описан также способ получения композиции полимера пропилена и гетерофазные композиции. Технический результат - получение полимеров пропилена, обладающих одновременно широким молекулярно-массовым распределением и высокой скоростью течения расплава.

В патенте на изобретение № 2471817 (дата начала действия патента 10.01.2012) описан способ получения полиамида-6 эмульсионной полимеризацией капролактама. Способ включает приготовление реакционной массы из капролактама, воды в качестве инициатора и полиэтилсилоксановой жидкости, ее нагрев, предварительную выдержку, основную выдержку при 210-215°С, охлаждение и отделение образовавшихся гранул, причем реакционную массу готовят сначала из капролактама и воды, нагревают ее до 210-215°С, предварительную выдержку осуществляют при 210-215°С в течение 6-7 часов, а полиэтилсилоксановую жидкость, предварительно нагретую до 210-215°С, вводят в реакционную массу перед основной выдержкой, которую осуществляют в течение 5-15 часов. Технический результат заключается в повышении качества целевого продукта и снижении энергозатрат.

В патенте на изобретение № 2471832 (дата начала действия патента 05.11.2007) описан способ изготовления полиамидной огнестойкой композиции, в частности, пригодной для производства формованных изделий. Композиция на основе полиамида содержит цианурат меламина и новолак. Композиция пригодна для производства формованных изделий, обладающих высокой стабильностью размера и применяемых в технике электрических или электронных соединений, таких как прерыватели, выключатели, соединительные устройства.

Заявителем было обнаружено, что полиамидная композиция с низким содержанием новолака и относительно низким содержанием цианурата меламина, производного меламина, обеспечивает получение оптимальных результатов в области огнестойкости и обратного поглощения воды. В противоположность тому, что было известно до настоящего времени, новолак не изменяет свойства огнестойкости полиамидной композиции, содержащей производное меламина.

Кроме того в полиамидной композиции новолак и цианурат меламина действуют в синергизме, хотя эти два соединения, используемые в качестве агента огнестойкости, обычно действуют по-разному. На самом деле, новолак известен как агент, участвующий в формировании слоя углерода, изолирующего полиамидную матрицу от пламени. Цианурат меламина, напротив, известен своим воздействием на контролируемый разрыв связей полиамида, вызывающий образование капель расплавленного полиамида, препятствуя, таким образом, распространению горения.

3. Экспериментально-технологическая часть: «Разработка технологической оснастки и технологии изготовления полимерных деталей для комплектования сельскохозяйственного оборудования».

Разработка технологической оснастки начинается с изучения исходных данных на конкретное полимерное изделие. Исходные данные включают следующее:

чертеж изделия с указанием места расположения впускного литникового канала, следов разъема формообразующих деталей, выталкивателей и др.;

тип производства (массовое, серийное и пр.);

годовая программа выпуска изделия в шт.;

срок службы изделия;

механические нагрузки;

оборудование, которое можно использовать для изготовления изделия (прессы, термо- или реактопластавтоматы, высокочастотные генераторы, термостаты и т. д,);

данные технической характеристики оборудования, не содержащиеся в каталогах (применение нестандартного сопла, переходные плиты, постаменты и т. д.);

вспомогательное оборудование и приспособления (съемники кассет, изделий, загрузочные приспособления, приспособления для свинчивания изделий или знаков и др.) и их паспортные данные.

Рисунок 3. Ролик натяжной К 02.001

Деталь ролик натяжной К 02.001 (рис. 3) является элементом натяжника КМ 15.010 цепных передач в картофелекопателях КТН-2ВМ, КСТ-1,4, КСТ-1,4М и в копателях лука КЛ-1,4 и ПЛ-1 выпускаемых на ЗАО «Агропромсельмаш». Тип производства - мелкосерийное, годовая программа выпуска изделия - 4600 - 5000 шт. в год. Срок службы изделия - 5 лет. Режим работы полимерного участка предприятия односменный. Механическая нагрузка - сухое трение, так как смазывающие материалы желательно не использовать, в связи с тем, что работа уборочных машин происходит в условиях песочной пыли, которая оседая на смазке будет ускорять износ. Деталь имеет сравнительно небольшие размеры: наибольший диаметр 65 мм, высота 48 мм, вес - 0,112 кг.

Рисунок 4. Звёздочка натяжная КМ 15.040

В настоящее время вместо ролика натяжного К 02.001 используется звёздочка натяжная КМ 15.040 (рис. 4), которая представляет собой сборочную единицу состоящую из двух частей:

венец звёздочки К 07.604, материал заготовки - круг? 120 мм сталь 45, вес 0,5 кг;

ступица КМ 15.010.611, материал заготовки - круг? 56 мм ст 3, вес 0,28 кг.

Изготовление звёздочки натяжной КМ 15.040 достаточно трудоёмкий технологический процесс. И ступица и венец проходят сначала заготовительную операцию, которая заключается в резке заготовок на пилах. Далее следует первичная токарная обработка. После этого на венце нарезаются зубья и он подвергается термообработке. Далее венец звездочки сваривается вместе со ступицей в единое целое и наступает очередь чистовой токарной операции, где растачивается посадочное место под подшипник.

Для изготовления ролика натяжного К 02.001 потребуется литьевая пресс-форма с разъёмом в двух плоскостях, но учитывая мелкосерийность производства, изготовление такой формы будет нецелесообразным. Поэтому проанализировав техническую документацию ЗАО «Агропромсельмаш» я пришёл к выводу, что целесообразней будет изготавливать ролик гладким, так после токарной обработки мы сможем получить как ролик натяжной К 02.001, так и ролик КБ 08.050.001. Ролик КБ 08.050.001 был покупным, так как в 2012 г. у нас на производстве был разработан и внедрён в производство картофелеуборочный комбайн «Лидчанин-1», где на стол переборки он идёт в количестве 156 штук. Но учитывая небольшой выпуск комбайнов, порядка 20 шт. в год, было принято решение разработать литьевую пресс-форму для изготовления ролика гладкого К 00.001 и технологию изготовления ролика натяжного К 02.001 и ролика КБ 08.050.001.

В выборе материала главным приоритетом являются антифрикционные свойства, ударная стойкость, поэтому свой выбор останавливаю на Гроднамид антифрикционный ПА6-ЛТА-СВ30.

Для моделирования деталей, готовых изделий, технологической оснастки на их изготовление существует большое количество компьютерных программ: AutoCAD, Solid Works, Компас 3-d и другие. Поскольку данная деталь имеет небольшие размеры, не требует особой точности изготовления, то выбираем недорогой продукт. Это компьютерная программа трёхмерного моделирования российской компании «Аскон»: КОМПАС-3D V12. В качестве основного методологического источника используется «Справочник по проектированию оснастки для переработки пластмасс» под редакцией Пантелеева А. П., Шевцова Ю. М. и Горячёва И. А.

Согласно чертежа изделия вычерчиваем 3-d модель и узнаём массово-центровые характеристики детали:

Масса M = 137,46 г;

Площадь S = 195,8 см2;

Объем V = 134,774 см3.

Согласно справочника Пантелеева для изготовления данного изделия подходит термопластавтомат Д 3134 - 500П с объёмом впрыска 500 см3, KuASY (табл. 6, стр. 22 ), который и выбираем, так как он есть на предприятии.

Производим расчёт количества отливок и требуемые усилия смыкания исходя из технических параметров термопластавтомата пользуясь данными справочной литературы (табл. 6, стр. 22 ).

Количество отливок (формула 7, стр. 66 ):

no = в1Qн /Qиk1 = 0,7 500/134,774 1,02 = 2,546,

где в1 = 0,7 - коэффициент использования машины; Qн = 500 см3 - номинальный объём автомата; Qи = 134,774 см3 - объём одного изделия; k1 = 1,02 - коэффициент учитывающий объём литниковой системы из расчёта на одно изделие.

Требуемое усилие смыкания (формула 5, стр. 65 ):

Ро = 0,1 q Fпр no k2 k3 = 0,1 32 97,9 2 1,1 1,25 = 861,52 кН?2500 кН,

где q = 32 МПа - давление пластмассы в оформляющем гнезде; Fпр = 97,9 см2 - площадь проекции изделия на плоскость разъёма формы; no = 2 - количество изделий в форме; k2 = 1,1 - коэффициент, учитывающий площадь литниковой системы в плане; k3 = 1,25 - коэффициент, учитывающий использование максимального усилия смыкания плит на 80 - 90 %.

На основании полученных расчётов видно, что на термопластавтомате Д 3134 - 500П с объёмом впрыска 500 см3 можно произвести отливку одновременно 2 изделий. Это возможно исходя из объёма впрыска и требуемого усилия смыкания.

Приступая к проработке формы, прежде всего необходимо правильно расположить в ней изделие, выбирая при этом оптимальное количество отливаемых изделий. Для этого следует учитывать конкретные условия производства (в том числе инструментального), план выпуска изделий, требуемую степень механизации и автоматизации формы,

Основные требования к положению изделия:

проекция в плане изделия или группы изделий должна располагаться симметрично относительно оси разъема пресса (термопластавтомата);

ориентировать изделие необходимо таким образом, чтобы при литье после разъема формы оно оставалось в ее в подвижной части;

окончательный выбор расположения изделия должен быть увязан с местом подвода впуска литниковой системы, системой охлаждения и товарным видом изделия.

Рисунок 5. Схема расположения деталей в форме.

На основании полученных расчётов прорисовываем схему расположения изделий в форме (рис. 5) После выбора схемы расположения изделия в литьевой форме приступаем к проектированию элементов литьевой формы в программном обеспечении Компас 3-d. Из справочной литературы (табл. 7, стр. 24 ) мы выбираем присоединительные размеры установочных элементов термопластавтомата, длину хода подвижной плиты, а также предельные размеры литьевой формы. В качестве материала для полуматриц, плиты знаков выбираем сталь 45, назначаем термообработку - закалка, с последующим отпуском. Для остальных плит (верхняя и нижняя, подкладочная плита, плиты толкателей) выбираем материал Ст 3. Колонки, литниковую и направляющие втулки, выталкиватели из стали У8 с последующей термообработкой.

Сначала вычерчиваем верхнюю и нижнюю полуматрицы располагая в них изделия согласно выбранной схемы. Толщину полуматриц принимаем предварительно 50 мм, исходя из того что минимальный размер формы в сборе должен составить 250 мм. Также предварительно принимаем что верхняя и нижняя плиты будут по 30 мм.

Ориентировочно ход подвижной части формы Lx можно определить по формуле для детали, требующей применения стержневых выталкивателей (стр 325 )

Lx = I + с = 48 + 60 = 108 мм < LM = 500 мм,

где I -- высота детали; с -- величина, учитывающая высоту центрального литника, просвет, необходимый для удаления детали, и т. д.; в формах со стержневой и точечно-стержневой литниковой системой величина с принимается равной 60 мм; LM = 500 мм -- ход подвижкой плиты машины (приводится в паспорте машины).

Одним из основных элементов формы является литниковая система, при помощи которой осуществляются соединение цилиндра с формой и ее заполнение.

d1 = dc +(0,4 - 0,6) = 4 +0,5 = 4,5 мм.

Оптимальная длина L центрального литникового канала зависят от его диаметра d1 и составляет 20 - 40 мм. Центральный литниковый канал обязательно выполняют коническим. Угол конуса определяется усадкой полимера и его адгезионными свойствами. Рекомендуемый угол конуса б = 3°. Следует отметить, что радиус сферы втулки r надо делать на 1 мм больше, чем радиус сферы сопла машины r1 для нормального прилегания втулки к соплу при смыкании. Непосредственно за втулкой для улавливания первой охлажденной порции массы и удержания литниковой системы в подвижной части формы обычно предусматривается специальное гнездо с обратным конусом.

Разводящие каналы располагаются в обеих полуформах. Площадь поперечного сечения разводящего канала определяется по эмпирической формуле (стр. 326 ):

Fрк? = = 16,235 мм2,

где Fnp = 3,14 3,122 = 32,47 мм2 -- наибольшая площадь поперечного сечения той части канала, которая предшествует рассчитываемой; nрк = 2 -- количество разветвляющихся разводящих каналов.

Наиболее благоприятная форма поперечного сечения таких каналов -- круглая, потому что в них наименьшая поверхность контакта массы со стенками канала, чем обеспечиваются наименьшие потери давления и тепла.

Поперечное сечение впускного канала в зависимости от принятой литниковой системы может быть трапециевидным, круглым (точечные литники), кольцевым. Площадь этого сечения определяется по формуле (стр. 328 ):

Fвк? = = 8,49 мм2,

где F0 = 3,14 2,33 = 16,98 мм2 -- площадь сечения входного отверстия основного канала; nвк = 2 -- количество впускных каналов.

Площадь поперечного сечения вентиляционных каналов определяется по следующей эмпирической формуле:

F, = 0,05 V = 0,05 134,774 = 6,739 мм2,

где V = 134,774 см3 -- обьем детали без полостей, арматуры; 0,05 -- коэффициент, имеющий размерность см-1.

Вентиляционные каналы выполняются прямоугольными с шириной меньшей, чем ширина впускного канала и глубиной от 0,03 до 0,06 мм. Каналы выполняются в форме после ее испытания только тогда, когда поперечное сечение зазоров в подвижных соединениях оказывается меньше рассчитанной величины Fв.

Смоделировав отдельные элементы формы посредством компьютерной программы собираем их в единое целое, визуально оценивая несовпадения и зазоры. По мере сборки смоделированной литьевой формы корректируем толщину плит. Длину хода выталкивателей определяем методом подбора, проверяя при этом согласованность движения отдельных элементов. На основе полученных 3-d моделей создается конструкторская и технологическая документация, необходимая для изготовления технологической оснастки.

Литература

полимерный материал деталь автотракторный

Дой М., Эдвардс С. - Динамическая теория полимеров. Пер. с англ. - М.: «Мир», 1998.

Крыжановский В. К., Бурлов В. В., Паниматченко А. Д., Крыжановская Ю. В., - Технические свойства полимерных материалов. - СПб. «Профессия», 2005.

Мирзоев Р. Г., Кугушев И. Д., Брагинский В. А. и др. - Основы конструирования и расчёта деталей из пласмасс и технологической оснастки для их изготовления. - Л. «Машиностроение» 1972.

А.П. Пантелеев, Ю.М. Шевцов, И.А. Горячев - Справочник по проектированию оснастки для переработки пластмасс. - М.: «Машиностроение». 1986г.

Тагер А. А., - Физико-химия полимеров. - М. «Химия», 1968.

“Технические свойство полимерных материалов” Уч.- справ.пос. В.К. Крыжановский, В.В. Бурлов, А.Д. Паниматченко, Ю.В. Крыжановская.-Спб., Издательство “Профессия”, 2003г.

“Конструирование литьевых форм в 130 примерах”. Под редакцией дипл.-инж. Э. Линднер, канд. тех. наук П. Унгер. Санкт-Петербург 2006г.

Размещено на Allbest.ru

Подобные документы

    Характеристика оборудования для изготовления резиновых изделий. Расчет гнездности оснастки, исполнительных размеров формообразующих деталей, параметров шины, установленного ресурса оснастки. Материалы деталей, их свойства, технология переработки.

    курсовая работа , добавлен 30.10.2011

    Классификация механизмов, узлов и деталей. Требования, предъявляемые к машинам, механизмам и деталям. Стандартизация деталей машин. Технологичность деталей машин. Особенности деталей швейного оборудования. Общие положения ЕСКД: виды, комплектность.

    шпаргалка , добавлен 28.11.2007

    Технология изготовления деталей и узлов подсвечника, выбор материалов. Обоснование технологии изготовления деталей, выбор технологических переходов и операций. Последовательность изготовления художественного изделия методом обработки деталей давлением.

    курсовая работа , добавлен 04.01.2016

    Оценка технологичности изделия. Обзор методов изготовления деталей. Операции технологического маршрута. Обоснование сортамента заготовки и метода ее изготовления. Расчет режимов резания при токарной обработке. Разработка технологической оснастки.

    курсовая работа , добавлен 12.01.2016

    Технологическая карта изготовления карандашницы. Выбор материала, технологического маршрута обработки деталей по минимуму приведенных затрат, оборудования и технологической оснастки. Технико-экономические обоснование процесса изготовления изделия.

    презентация , добавлен 06.04.2011

    Методика выполнения кинематических, силовых и прочностных расчетов узлов и деталей энергетического оборудования. Особенности выбора материалов, вида термической обработки для узлов и деталей оборудования электростанций, а также системы их обеспечения.

    курсовая работа , добавлен 14.12.2010

    Определение трудоемкости выполнения работ по изготовлению тонколистовых деталей. Расчет численности персонала. Расчет количества необходимого технологического оборудования. Планировка участка. Разработка графика технологической подготовки производства.

    курсовая работа , добавлен 02.12.2009

    Назначение и конструктивные особенности деталей "шестерня" и "крышка". Выбор и обоснование способов получения заготовок; химические, механические и технологические свойства стали. Подбор оборудования и оснастки для отливки деталей; аналитический расчет.

    курсовая работа , добавлен 18.09.2013

    Расчет и разработка конструкции технологической оснастки для изготовления изделия "Гофра". Расчет гнездности оснастки. Конструирование формообразующих полостей. Расчет усадки и исполнительных размеров формообразующих деталей. Тепловой расчет оснастки.

    курсовая работа , добавлен 23.08.2014

    Особенности технологии изготовления типовых конструкций на примере корпуса цистерны. Изучение характера соединения деталей между собой, выбор способа сварки и оборудования. Способы транспортировки, установки и закрепления деталей, свойства материалов.

  • Глава 2 технологические системы как экономические объекты
  • 2.1. Структура, свойства и технико-экономический уровень технологической системы
  • 2.2. Закономерности развития технологических систем
  • Раздел II анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Глава 3. Анализ и экономическая оценка базовых технологий в черной металлургии
  • Глава 4. Анализ и экономическая оценка базовых технологий в цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • 5.1. Технологические процессы изготовления заготовок методами пластической деформации
  • 5.2. Технологические процессы получения заготовок методами литья
  • Глава 6. Анализ и экономическая оценка технологий механической обработки
  • 6.1. Анализ и экономическая оценка традиционных методов обработки резанием
  • 6.2. Технико-экономический анализ технологического процесса механообработки
  • Зависимость себестоимости заданной партии деталей от годового выпуска
  • 6.3. Электрофизические и электрохимические методы обработки металлов
  • Глава 7. Анализ и экономичекая оценка технологий сборочно производства
  • 7.1. Сущность процесса сборки. Технико-экономические показатели
  • 7.2. Методы соединения сборочных элементов. Сущность процессов сварки и их сравнительная оценка
  • Глава 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • 8.1. Технология производства неорганических кислот
  • 8.2. Сущность технологических процессов производства полимерных материалов
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива
  • Виды топлива
  • Раздел III. Особенности развития технологических систем на уровне предприятия и отрасли Глава 9. Технологическое развитие на уровне предприятия
  • 9.1. Формирование и развитие технологических систем предприятия с дискретным производством
  • 9.2. Формирование и развитие технологических систем предприятий с непрерывным производством
  • 9.3. Автоматизация производства
  • 9.4. Отраслевые особенности технологического развития
  • Раздел IV.Технологический прогресс и экономическое развитие Глава 10. Сущность и основные направления ускорения нтп
  • Глава 11. Прогрессивные химико-технологические процессы
  • Глава 12. Прогрессивные виды технологий
  • Глава 13. Рыночные аспекты технологического развития
  • Раздел I. Технологические процессы и технологические системы как экономические объекты
  • Раздел II. Анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Главы 3 и 4. Анализ и экономическая оценки базовых технологий в черной и цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • Глава 6. Анализ и экономическая оценка технологий механообработки
  • Глава 7. Анализ и экономическая оценка технологий сборочного производства
  • Глада 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • Раздел III. Особенности развития технологических"систем на уровне предприятия и отрасли
  • Раздел IV. Технологический гресс и экономическое развитие
  • Список рекомендуемой литературы
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива

    Топливом называются твердые, жидкие и газообразные горючие вещества, являющиеся источником тепловой энер­гии и сырьем для химической промышленности.

    В результате химической переработки различных топлив получают огромное количество углеводородного сырья для производства пластических масс, химических волокон, синте­тических каучуков, лаков, красителей, растворителей и т.п. Так, например, при коксовании углей получают: бензол, то­луол, ксилолы, фенол, нафталин, антрацит, водород, метан, этилен и другие продукты. При добыче нефти из нее выделя­ют "попутные" газы, которые содержат метан, этан, пропан, бутан и другие углеводороды, используемые в химической промышленности.

    Источниками углеводородного сырья слу­жат также газы, полученные в результате переработки нефти (крекинге, пиролизе, риформинге). Эти газы содержат пре­дельные углеводороды - метан, этан, пропан, бутан и непре­дельные углеводороды - этилен, пропилен и др. Кроме того, при переработке нефти могут быть получены и ароматичес­кие углеводороды: бензол, толуол, ксилол и их смеси.

    Одним из важнейших видов химического сырья является природный газ, содержащий до 98% метана. Древесина и древесные от­ходы являются источником получения целлюлозы, этилового спирта, уксусной кислоты, фурфурола и ряда других продук­тов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п.

    Сжигание топлива обеспечивает энергией тепловые электростанции, промышленные предприятия, транспорт, быт. Значение топлива как химического сырья с каждым годом растет.

    Поскольку в мировом топливном балансе повышается роль твердого топлива, то во всем мире разрабатывают мето­ды получения из углей и сланцев дешевого жидкого и газооб­разного топлива, а также химического сырья.

    Развитие угольной и ядерной энергетики даст в будущем возможность прекратить потребление нефти и природного газа в энергетических целях и полностью передать эти виды топлива в сферу промышленности как сырье для химической про­мышленности, а также для синтеза белков и жиров.

    Все топлива по агрегатному состоянию делятся на твер­дые, жидкие и гааообразные; по происхождению - на есте­ственные и искусственные {См.табл.}.

    Искусственные топлива получают в результате переработ­ки естественных топлив.

    Виды топлива

    Агрегатное состояние топлива

    Т О П Л И В О

    естественное

    искусственное

    Древесина, торф, уголь, сланцы

    Кокс, полукокс, древесный уголь

    Бензин, керосин, лигроин, мазут

    Газообразное

    Природный газ, попутные газы

    Кокосовый газ, генераторные газы, газы нефтепереработки

    Твердые топлива состоят из горючей органической массы и негорючей, или минеральных примесей и баласта. Органи­ческая часть топлива состоит из углерода, водорода и кислоро­да. Помимо этого в ней могут содержаться азот и сера. Него­рючая часть топлива состоит из влаги и минеральных веществ. Важнейшим жидким топливом является нефть.

    Нефть содержит 80-85% углерода, 10-14% водорода и представ­ляет собой сложную смесь углеводородов. Помимо углеводо­родной части в нефти имеются небольшая неуглеводородная часть и минеральные примеси. Углеводородная часть нефти состоит из углеводородов трех рядов: парафинового (алканы), нафтенового (циклены) и роматического (арены).

    Газообразные парафиновые углеводороды от СН 4 до С 4 Н 10 находятся в нефти в растворенном состоянии и могут быть выделены из нее в виде попутных газов при добыче нефти. Жидкие парафиновые углеводороды от С 5 Н 34 до С 15 Н 34 составляют основную массу жидкой части нефти и жидких фракций, получаемых при ее переработке.

    Твердые парафиновые углеводороды от С 16 Н 34 и выше растворены в нефти и могут быть выделены из нее.

    Нафтеновые углеводороды представлены в нефти главным образом производными циклопентана и циклогексана.

    Ароматические углеводороды содержатся в нефти, в виде бензола, толуола, ксилола в небольших количествах.

    Неуглеводородная часть нефти состоит из сернистых, кис­лородных и азотистых соединений. Кислородные соединения - это нафтеновые кислоты, фенолы, смолистые вещества.

    Минеральные примеси - это механические примеси вода, минеральные соли, зола.

    Механические примеси - твердые частицы песка, глины, пород - выносятся из недр земли с потоком добываемой нефти. Вода в нефти присутствует в двух видах: свободная, отделяе­мая от нефти при отстаивании; в виде стойких эмульсий, кото­рые могут быть разрушены только специальными, методами.

    Минеральные соли, например, хлориды магния и каль­ция, растворены в воде, содержащейся в нефти.

    Зола составляет в нефти сотые, и даже тысячные доли процента.

    Твердые топлива перерабатывают следующими методами: пиролиз, или сухая перегонка, газификация и гидрирование.

    Пиролиз осуществляется при нагревании топлива без доступа воздуха. В результате протекают физические процес­сы, например испарение влаги, и химические процессы - превращение компонентов топлива с получением;ряда хими­ческих продуктов. Характер отдельных процессов, протекаю­щих при переработке различных топлив, различен.

    В основ­ном все они требуют подвода тепла извне. Нагрев реакцион­ных аппаратов производится горячими дымовыми газами, ко­торые передают тепло топливу через стенку аппарата или же при непосредственном соприкосновении с топливом.

    Газификация - процесс переработки топлива, при котором органическая часть его превращается а горючие газы в присутствии воздуха, водяного пара, кислорода и дру­гих газов. Этот процесс экзотермический. Температура гази­фикации составляет 900-1100 °С.

    Гидрирование - переработка твердого топлива, при которой под влиянием высокой температуры, при дейст­вии водорода и в присутствии катализаторов происходят хи­мические реакции, приводящие к образованию продуктов, более, богатых водородом, чем исходное сырье. Качество и количество продуктов, полученных при гидрировании, зави­сит от вида перерабатываемого топлива, от условий проведе­ния процесса и ряда других факторов.

    Методы переработки нефти различны и их можно разде­лить на две группы: физические и химические.

    Физические методы переработки основаны на использова­нии физических свойств фракций, входящих в состав нефти. Химических реакций при, этих методах переработки не проте­кает. Наиболее распространенным физическим методом пере­работки нефти является ее перегонка, при которой нефть разделяет на фракции.

    Химические методы переработки основаны на том, что под влиянием высоких температур и давления в присутствии катализаторов углеводороды, содержащиеся в нефти и неф­тепродуктах, претерпевают химические превращения, в ре­зультате которых образуются новые вещества.

    Термический крекинг- химический метод переработки нефти, суть которого заключается в расщеплении длинных молекул тяжелых углеводородов, входящих в высоко-кипящие фракции, на более короткие молекулы легких, низ­кокипящих продуктов Термический крекинг протекает при высоких температурах 450-500 °С и повышенном давлении. Термический крекинг, проводимый при температуре 670- 1200 °С и при атмосферном давлении называется пиролизом.

    Каталитическим называется крекинг с применением катализатора. Применение катализатора позво­ляет снизить температуру крекинга и не только увеличить количество получаемых продуктов, но и улучшить их качест­во. Катализаторами служат глины типа бокситов, а также синтетические алюмосиликаты, содержащие 10-25% А1 2 О 3 , SiO 2 . Температура крекинга - 450 - 500 °С. Процесс идет при повышенном давлении.

    Разновидностью каталитического крекинга является риформинг. Катализатором служит платина, нанесенная на окись алюминия.

    С помощью вышеописанных методов переработки естест­венных топлив получают искусственные твердые, жидкие и га­зообразные топлива, а также важнейшие виды нефтепродуктов.

    В результате коксования углей получают следующие про­дукты:

    1. Кокс - продукт темно-серого цвета, пористость ко­торого составляет 45-55%, содержит 97-98% углерода. В зависимости от назначения делится на:

    а) доменный кокс - крупный, более 40 мм в диаметре, прочный и пористый. По содержанию серы подразделяется на марки КД-I, КД-2, КД-3. Содержание серы не должно превышать 1,3-1,9%;

    б) литейный кокс (марки КЛ). Нижний предел крупности- 25 мм в диаметре. Содержание серы в нем допускается не выше 1,2-1,3%. Он имеет меньшую пористость и прочность по сравнению с доменным коксом;

    в) коксовый орешек (КО) применяется для производства ферросплавов. Размер 10 - 25 мм в диаметре. Коксик - фракция от 10 до 20 мм - применяется для газификации;

    г) коксовая мелочь (фракция диаметром менее 10 мм) применяется для агломерации;

    д) кокс, не пригодный для технических нужд из-за большого содержания золы и серы, а также вследствие низких механических свойств, используется в качестве топлива.

      Обратный коксовый газ содержит 60% водорода и 25% метана, остальное - азот, окись углерода, углекислый газ, кислород, непредельные углеводороды. При­меняется для подогрева воздушного дутья в доменных печах, для обогрева сталеплавильных, коксовых и других печей, а также служит сырьем для производства водорода и аммиака.

      Сырой бензол состоит из бензола, толуола, ксилола, сероуглерода, фенолов и др. Вещества, входящие в состав сырого бензола, широко используются в производстве полимеров, красителей, лекарственных препаратов, взрывча­тых веществ, ядохимикатов и др.

    4. Каменноугольная смола является сме­сью ароматических углеводородов. Ее используют для произ­водства красителей, химических волокон, пластических масс, в фармацевтической промышленности, а также для производства различных технических масел.

    Продукты прямой перегонки нефти можно разделить на три группы: топливные фракции, масляные дистилляты и гудрон. Наиболее ценной топливной фракцией являются бензины, в состав которых входят углеводороды с температурой кипе­ния 180-200 °С. Бензины применяются как компоненты авто­мобильных и авиационных бензинов и в качестве растворителей.

    Лигроины включают углеводороды с температурами кипения 105-220 °С. Легкий лигроин (с температурой кипе­ния 105 - 150 °С) используется как сырье для дальнейшей пере­работки на бензины, а тяжелый - как компонент реактивных топлив или растворителей для лакокрасочной промышленности.

    Керосины - углеводородная фракция с температурами кипения 140-330 °С; Применяются в качестве осветительного керосина, а также в качестве реактивных и дизельных топлив.

    Газойль - фракции с температурами кипения до 400 °С. Легкий газойль (соляр) является основой дизельных топлив. Тяжелые газойли являются сырьем для дальнейшей переработки.

    Maзут - фракция, включающая углеводороды, пара­фин, маслянистые и смолистые вещества с температурой ки­пения свыше 300 °С. Легкие мазуты применяются в качестве котельного топлива и топлива газовых турбин; тяжелые идут на дальнейшую переработку.

    Масляные дистилляты - фракции, состоящие из углеводородов С 20 –С 70 . Температуры кипения ве­ществ, входящих в их состав, составляют от 350 до 550 °С. Масляные дистилляты применяют для получения большого количества смазочных и специальных масел.

    Гудрон состоит из смолистых веществ, парафинов и некоторого количества тяжелых углеводородов циклического строения. Гудрон - полупродукт для получения битумов и кокса. Некоторые виды гудрона применяются в качестве мягчителей для резиновой промышленности.

    Продуктами крекинга являются: крекинг-бензины, кре­кинг-газы и крекинг-остаток.

    Крекинг-бензины применяют в качестве компонентов автомобильных бензинов. Крекинг-газы используются в каче­стве топлива и как сырье для синтеза органических соедине­ний. Крекинг-остаток является смесью смолистых и асфальтовых веществ с некоторым количеством непрореаги­ровавшего сырья. Применяется крекинг-остаток как котель­ное топливо и сырье для производства битума.

    К технико-экономическим показателям нефтеперерабаты­вающей и коксохимической промышленности относятся: про­изводительность и мощность оборудования, интенсивность процесса, производительность труда, себестоимость продук­ции, капитальные затраты. Коксохимическая и нефтеперера­батывающая отрасли промышленности характеризуются высокой материале- и энергоемкостью.

    Затраты на сырье при производстве нефтепродуктов составляют 50-75%. Следова­тельно, основным фактором, влияющим на себестоимость, является снижение затрат на тонну выпускаемой продукции, которое можно осуществить совершенствованием технологи­ческих процессов переработки нефти и кокса, применением каталитических процессов, более совершенных аппаратов и комплексной автоматизации, что ведет к сокращению капи­тальных затрат, затрат на энергию и пар, повышение произ­водительности

    Полимерные материалы в ремонте машин


    Полимерные материалы при ремонте машин применяются для восстановления размеров изношенных деталей, заделки трещин и пробоин, упрочнения резьбовых соединений и неподвижных посадок, антикоррозионной защиты, склеивания деталей и материалов, а также для изготовления деталей. Для этих целей наиболее часто применяются полиамидные смолы в виде гранул с белым или просвечивающим желтым оттенком (капроновый порошок). Они отличаются от других полимеров малым коэффициентом трения, значительной термоста-, бильностью, хорошей прорабатываемостью, высокой антикоррозионной и химической стойкостью, безвредны для работающих.

    Полимерные материалы применяют как в чистом виде (полиэтилен, полистирол, капрон, полипропилен), так и в виде пластмасс. Для образования пластмасс к полимерному материалу добавляют ряд компонентов: наполнители (стеклянное волокно, асбест, цемент, металлические порошки), улучшающие физико-механические свойства пластмасс; пластификаторы (дибутилфталат, диакрилфталат, жидкий тиокол и другие), улучшающие пластичность и эластичность пластмасс; отвердители (полиэтиленполиамин и др.) для отвердения (полимеризации) пластмасс.

    Нанесение полимерных покрытий с целью восстановления изношенных деталей имеет ряд преимуществ перед другими способами. Невысокая температура нагрева деталей (250…320 °С) перед нанесением покрытия не изменяет структуру металла. Полимерными покрытиями можно восстанавливать детали с большим износом (1… 1,2 мм), тогда как при хромировании восстанавливают детали с износом не более 0,5 мм. Покрытие, как правило, не нуждается в механической обработке, так как имеет чистую глянцевую поверхность и незначительную разницу в толщине слоя.

    Основные операции восстановления деталей полимерными материалами включают подготовку деталей к восстановлению, нанесение покрытия, термическую обработку и контроль.

    Подготовка детали к восстановлению заключается в изоляции мест, не подлежащих покрытию, и создании условий, обеспечивающих хорошую адгезию (прилипание) полимерного покрытия с металлом. Изоляцию производят алюминиевой либо латунной фольгой или жидким стеклом с мелом. Места же, подлежащие покрытию, обрабатывают абразивной крошкой или крошкой отбеленного чугуна и обезжиривают ацетоном или бензином.

    В ремонтной практике применяется несколько способов нанесения полимерных покрытий на металлические поверхности. Наиболее распространены газопламенный, вихревый и вибрационный.

    При газопламенном способе используют факел ацетиленового пламени. Струя воздуха с частицами полимерного порошка продувается через этот факел. Порошок расплавляется и, попадая на предварительно нагретую до температуры 2Ю…260 °С (в зависимости от марки применяемого порошка) поверхность детали, сращивается с ней, образуя наплавленный слой. После нанесения покрытия требуемой толщины подачу порошка прекращают и дополнительно прогревают деталь для того, чтобы сделать слой более ровным и плотным. Газопламенное напыление удобно применять для покрытия крупных деталей, используя установки УПН -4Л, УПН -6-63. Толщина покрытия практически не ограничена.

    Покрытие металлических деталей полимерными материалами вихревым способом проводится на установках типа А-67М. Подготовленные детали нагревают в термопечи либо газовыми горелками до температуры 280… 300 °С и помещают в камеру установки. На высоте 50…100 мм от днища установки укреплена пористая перегородка, на которую насыпают порошкообразный слой капрона толщиной не менее 100 мм. Для изготовления пористой перегородки используют стеклоткань, керамику, войлок.

    Через перегородку в камеру подается сжатый воздух, азот или углекислый газ под давлением 0,1…0,2 МПа. Частицы порошка равномерно покрывают деталь, плавятся и образуют равномерное покрытие. Напыление длится 8…10 с, во время напыления детали сообщается возвратно-поступательное движение. Чтобы получить требуемую толщину наносимого слоя, каждую деталь необходимо погружать в камеру несколько раз. После каждого погружения ее извлекают, чтобы порошок оплавился, и вслед за этим помещают в камеру установки вторично. Охлаждение восстановленной детали производят на воздухе, в воде или в минеральном масле при комнатной температуре.

    Вибрационный способ напыления основан на свойстве сыпучих материалов течь под воздействием колебания, В вибрационной установке якорь и днище вибрируют с частотой 50 Гц. При этом происходят разрыхление и переход порошка капрона в псевдосжиженное состояние. Нагретую деталь, так же как и в вихревом способе, погружают в слой порошка и извлекают для его оплавления. Повторением этих операций обеспечивают требуемую толщину полимерного покрытия.

    При быстром охлаждении расплавленного полиамида он затвердевает в виде прозрачной массы, обладающей пониженной износостойкостью. Поэтому охлаждать изделие и нанесенное на его поверхность полимерное покрытие следует медленно. При этом происходит его помрнение и образование более или менее крупных кристаллов. Такой хорошо кристаллизованный полиамид более тверд, чем прозрачный, а следовательно, и более износостоек.

    Меньшее распространение получил струйный беспламенный метод напыления пластмасс, который заключается в том, что распыление порошка производится пистолетом-распылителем без нагрева порошка на предварительно подготовленную и нагретую поверхность. Детали, подлежащие восстановлению, после подготовки поверхности (обезжиривание, накатка, химическая очистка и травление, промывка) укладываются в алюминиевую оправку. На электропечи оправка вместе с деталями нагревается до температуры 240 °С, после чего пистолетом-распылителем с помощью подогретого сжатого воздуха порошок наносится на поверхность деталей. Частицы порошка расплавляются и образуют сплошное покрытие. В качестве пистолета-распылителя используют распылители, применяемые для окрасочных работ.

    Недостатком этого способа является значительная потеря порошковых материалов при напылении и загрязнение воздуха.

    Методом литья под давлением термопластичных материалов в ремонтной практике восстанавливают и изготовляют детали. Данный метод основан на выдавливании из обогревательного цилиндра литьевой машины разогретой пластмассы в гнездо сомкнутой пресс-формы. Литье под давлением проводится на термопластавтоматах ДБ-3329, литьевых машинах ПЛ-71 и др. Изношенная поверхность детали предварительно протачивается, чтобы слой пластмассы был не менее 0,5 мм на сторону. Если возможно, йа детали протачивают канавки, делают сверления.

    Подготовленную деталь устанавливают в разогретую пресс-форму, имеющую номинальные размеры восстанавливаемой детали, и нагнетают в нее разогретую пластмассу под давлением 15…125 МПа. Деталь должна быть нагрета до температуры 230…290 °С. Наиболее распространенные термопластичные материалы, применяемые для восстановления деталей литьем под давлением,- капрон (поликапролактам) марки Б, смолы П-68, П-54, АК-7, отходы капрона.

    Для улучшения качества полимерного покрытия рекомендуется последующая термическая обработка, например выдержка в течение 2 ч в масле при температуре 100…120 °С с дальнейшим охлаждением вместе с маслом.

    Полимерные материалы, имеющие наибольшее применение при ремонте кузовов, условно делят на две группы: клеи и пластмассы.

    Клеи предназначены для создания из различных материалов неразъемных соединений. Наиболее часто при ремонте кузовов и их деталей применяют следующие клеи:
    — БФ-2 и БФ-4 - для склеивания металлических и неметаллических материалов, эксплуатирующихся при температуре от-60 до 60 °С;
    — ФЛ-4С - для герметизации пространства между швами в клеесварных соединениях из стали, алюминиевых и других сплавов, а также для склеивания металлов и неметаллических материалов;
    — 88-Н - для приклеивания холодным способом резины к металлам, стеклу и другим материалам, а также для склеивания резины с резиной;
    — 88-НП-35, 88-НП-43, 88-НП-130 холодного отверждения - для крепления различных материалов к окрашенному металлу, стеклу при сборке кузовов автомобилей ВАЗ .

    Детали из органического стекла склеивают путем размягчения склеиваемых поверхностей дихлорэтаном. В качестве клея можно применять раствор, состоящий из 2…3% опилок органического стекла, растворенных в муравьиной кислоте или дихлорэтане. Для предотвращения быстрого испарения и загустения клея его хранят в закрытом сосуде при температуре 18…20 °С. Для получения рабочей вязкости загустевшего клея (концентрированный сироп) его разбавляют дихлорэтаном.

    Эпоксидные клеи универсальны, приготовление и применение их несложно, и они не требуют давления при склеивании. При ремонте кузовов используют эпоксидные клеевые композиции, свойства которых зависят от их состава. Эпоксидные композиции изготовляют из составных частей, чаще всего из эпоксидной смолы ЭД-16 или ЭД-20, пластификатора-дибутилфталата, наполнителя и отвердителя. Эпоксидные смолы в полимерных композициях являются связующими, пластификаторы уменьшают хрупкость, увеличивают эластичность отвержденных эпоксидных смол, наполнители увеличивают теплопроводность, повышают коэффициент линейного расширения и снижают усадку смолы. Поэтому наполнители влияют на физико-механические и технологические свойства компаунда. В качестве наполнителей применяют слюдяную пыль, измельченный асбест, стальной или чугунный порошок и другие. Вид и количество отвердителя определяют скорость и степень изменения физического состояния композиции. Для заделки вмятин в кузовах и оперении обычно используют в качестве отвердителя полиэтиленполиамин или гексаметилендиамин, при которых отверждение композиции происходит без подогрева в нормальных температурных условиях.

    Пластмассы используют для нанесения покрытий, заделки вмятин и сварных швов в кузовах. Термостойкая масса ТПФ -37 в виде термопорошка состоит из поливинилбутиральной смолы, полиэтилена, фенолформальдегидной смолы, наполнителя и стабилизатора. Термопорошок наносят на поверхности кузова газопламенным напылением.

    К атегория: - Ремонтирование строительных машин