Компьютерный эксперимент. Компьютерный эксперимент Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство

В заключение главы рассмотрим вопрос: куда относить компьютерный эксперимент и компьютерное моделирование (computer simulations)!

Первоначально компьютерное моделирование появляется в метеорологии и ядерной физике, но сегодня спектр его применения в науке и технике чрезвычайно широк. Очень показателен в этом отношении пример "глобального моделирования", где мир рассматривается как совокупность взаимодействующих между собой подсистем: население, социум, экономика, производство продовольствия, инновационный комплекс, природные ресурсы, среда обитания, страны и регионы мира (первым примером является опубликованный в 1972 г. доклад Римскому клубу "Пределы роста"). Развитие и взаимодействие этих подсистем определяют мировую динамику.

Очевидно, что мы имеем здесь дело со сверхсложной системой с массой нелинейных взаимодействий, для которой не удается построить ВИО-тип модели. Поэтому здесь поступают следующим образом. Собирается полидисциплинарная группа, состоящая из специалистов, относящихся к различным подсистемам. Эта группа, исходя из имеющихся у ее членов знаний, составляет блок-схему из большого множества элементов и связей. Эта блок-схема преобразуется в математическую компьютерную модель, репрезентирующую моделируемую систему. После чего проводятся численные эксперименты с компьютерной моделью, т.е. компьютерные эксперименты, которые со стороны создания моделей объектов и процессов, отладки и выполнения напоминают реальный сложный эксперимент.

Между мысленным и компьютерным экспериментами есть определенная аналогия. В случае компьютерного эксперимента отрабатываемая в ходе него компьютерная модель является аналогом ВИО-модели в мысленном ВИО-эксперименте. В обоих случаях экспериментальное исследование является элементом поиска адекватной теоретической модели. В ходе этого поиска в первом случае подбираются ПИО и взаимодействия между ними (и их величина), а во втором – элементы и связи (и их величина). Из этого сопоставления очевидно, что результатом такой экспериментальной деятельности в обоих случаях возможно появление нового знания. То есть компьютерные модели соответствуют теоретическим ВИО-моделям явления, а компьютерный эксперимент является средством для их построения. При этом экспериментирование происходит с моделью, а не явлением (на то же согласно работе указывается и в работах ).

В физике и других естественных науках в случае "лабораторных" явлений реальный эксперимент может что-то менять в самом явлении ("задавать ему вопрос"). Если этого оказывается достаточно, чтобы создать ВИО-модель, и остается вопрос лишь об уточнении ее параметров, то в этом случае компьютерная модель имеет более тривиальное, чем описано выше, применение – решение сложных уравнений, описывающих физическую или техническую систему, и подбор параметров для систем, для которых ВИО-модель уже задана. Этот случай часто называют "численным экспериментом".

Однако в физике рассматриваются и явления, которые нужно качественно изучить до помещения их в лабораторию, например выделение ядерной энергии или рождение элементарных частиц. Подобная ситуация может возникнуть: 1) в перечисленных для мысленного эксперимента случаях экономической или технической сложности реального эксперимента, 2) в случае отсутствия ВИО-модели, т.е. отсутствия теории явления (как в случае турбулентных течений). В ядерной физике и физике элементарных частиц мы имеем первый, если нс оба случая. Здесь мы имеем ситуацию, аналогичную "глобальному моделированию", и начинаем экспериментировать с теоретическими моделями путем компьютерного моделирования. Поэтому неудивительно, что компьютерное моделирование появилось в ядерной физике очень рано.

Итак, компьютерный эксперимент и компьютерные модели в нетривиальном случае, как в примере с "глобальным моделированием", отвечают, соответственно, мысленному ВИО-эксперименту и теоретическим ВИО- моделям явления.

Эксперимент – это форма связи между двумя сторонами – явлением и теоретической моделью. В принципе, отсюда следует возможность манипулирования с двумя сторонами . В случае реального эксперимента экспериментирование происходит с явлением, а в случае мысленного и компьютерного эксперимента, который можно рассматривать как аналог мысленного, – с моделью. Но в обоих случаях целью является получение нового знания в виде адекватной теоретической модели.

  • Это включает и замечание E. Winsberg: "Неверно, что реальный эксперимент всегда манипулирует только с интересующим объектом. Фактически и в реальном эксперименте, и в симуляции имеет место сложное отношение между тем, с чем манипулируют в исследовании, с одной стороны, и системами реального мира, которые являются целью исследования – с другой... Мендель, например, манипулировал с горохом, а интересовался изучением феномена общей наследственности" .

Эксперимент

Экспериме́нт (от лат. experimentum - проба, опыт) в научном методе - метод исследования некоторого явления в управляемых условиях. Отличается от наблюдения активным взаимодействием с изучаемым объектом. Обычно эксперимент проводится в рамках научного исследования и служит для проверки гипотезы , установления причинных связей между феноменами . Эксперимент является краеугольным камнем эмпирического подхода к знанию . Критерий Поппера выдвигает возможность постановки эксперимента в качестве главного отличия научной теории от псевдонаучной . Эксперимент - это метод исследования, который воспроизводится в описанных условиях неограниченное количество раз, и даёт идентичный результат.

Модели эксперимента

Существует несколько моделей эксперимента: Безупречный эксперимент - невоплотимая на практике модель эксперимента, используемая психологами-экспериментаторами в качестве эталона. В экспериментальную психологию данный термин ввёл Роберт Готтсданкер, автор известной книги «Основы психологического эксперимента», считавший, что использование подобного образца для сравнения приведёт к более эффективному совершенствованию экспериментальных методик и выявлению возможных ошибок в планировании и проведении психологического эксперимента.

Случайный эксперимент (случайное испытание, случайный опыт) - математическая модель соответствующего реального эксперимента, результат которого невозможно точно предсказать. Математическая модель должна удовлетворять требованиям: она должна быть адекватна и адекватно описывать эксперимент; должна быть определена совокупность множества наблюдаемых результатов в рамках рассматриваемой математической модели при строго определенных фиксированных начальных данных, описываемых в рамках математической модели; должна существовать принципиальная возможность осуществления эксперимента со случайным исходом сколь угодное количество раз при неизменных входных данных; должно быть доказано требование или априори принята гипотеза о стохастической устойчивости относительной частоты для любого наблюдаемого результата, определённого в рамках математической модели.

Эксперимент не всегда реализуется так, как задумывалось, поэтому было придумано математическое уравнение относительной частоты реализаций эксперимента:

Пусть имеется некоторый реальный эксперимент и пусть через A обозначен наблюдаемый в рамках этого эксперимента результат. Пусть произведено n экспериментов, в которых результат A может реализоваться или нет. И пусть k - это число реализаций наблюдаемого результата A в n произведенных испытаниях, считая что произведенные испытания являются независимыми.

Виды экспериментов

Физический эксперимент

Физический эксперимент - способ познания природы , заключающийся в изучении природных явлений в специально созданных условиях. В отличие от теоретической физики , которая исследует математические модели природы, физический эксперимент призван исследовать саму природу.

Именно несогласие с результатом физического эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к окружающему нас миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом.

В идеале, Экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации . Однако на практике это недостижимо. Интерпретация результатов более-менее сложного физического эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории.

Компьютерный эксперимент

Компьютерный (численный) эксперимент - это эксперимент над математической моделью объекта исследования на ЭВМ, который состоит в том что, по одним параметрам модели вычисляются другие ее параметры и на этой основе делаются выводы о свойствах объекта, описываемого математической моделью. Данный вид эксперимента можно лишь условно отнести к эксперименту, потому как он не отражает природные явления, а лишь является численной реализацией созданной человеком математической модели. Действительно, при некорректности в мат. модели - ее численное решение может быть строго расходящимся с физическим экспериментом.

Психологический эксперимент

Психологический эксперимент - проводимый в специальных условиях опыт для получения новых научных знаний посредством целенаправленного вмешательства исследователя в жизнедеятельность испытуемого.

Мысленный эксперимент

Мысленный эксперимент в философии, физике и некоторых других областях знания - вид познавательной деятельности, в которой структура реального эксперимента воспроизводится в воображении. Как правило, мысленный эксперимент проводится в рамках некоторой модели (теории) для проверки её непротиворечивости. При проведении мысленного эксперимента могут обнаружиться противоречия внутренних постулатов модели либо их несовместимость с внешними (по отношению к данной модели) принципами, которые считаются безусловно истинными (например, с законом сохранения энергии, принципом причинности и т. д.).

Критический эксперимент

Критический эксперимент - эксперимент, исход которого однозначно определяет, является ли конкретная теория или гипотеза верной. Этот эксперимент должен дать предсказанный результат, который не может быть выведен из других, общепринятых гипотез и теорий.

Литература

  • Визгин В. П. Герметизм, эксперимент, чудо: три аспекта генезиса науки нового времени // Философско-религиозные истоки науки. М ., 1997. С.88-141.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Эксперимент" в других словарях:

    - (от лат. experimentum проба, опыт), метод познания, при помощи крого в контролируемых и управляемых условиях исследуются явления действительности. Э. осуществляется на основе теории, определяющей постановку задач и интерпретацию его… … Философская энциклопедия

    эксперимент - Предложение человеку по своей воле прожить, испытать, ощутить актуальное для него или пойти на осознанный эксперимент, воссоздав в ходе терапии спорную или сомнительную для него ситуацию (прежде всего в символической форме). Краткий толковый… … Большая психологическая энциклопедия

    Никто не верит в гипотезу, за исключением того, кто ее выдвинул, но все верят в эксперимент, за исключением того, кто его проводил. Никаким количеством экспериментов нельзя доказать теорию; но достаточно одного эксперимента, чтобы ее опровергнуть … Сводная энциклопедия афоризмов

    Эксперимент - (лат. еxperimentum – сынау, байқау, тәжірибе) – нәрселер (объектілер) мен құбылыстарды бақыланылатын және баскарылатын жағдайларда зерттейтін эмпириялық таным әдісі. Эксперимент әдіс ретінде Жаңа заманда пайда болды (Г.Галилей). Оның философиялық … Философиялық терминдердің сөздігі

    - (лат.). первый опыт; все то, что употребляет естествоиспытатель, чтобы заставить действовать при известных условиях, силы природы, как бы искусственно вызывая явления, встречающиеся в ней. Словарь иностранных слов, вошедших в состав русского… … Словарь иностранных слов русского языка

    См. опыт... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. эксперимент испытание, опыт, проба; исследование, проверка, попытка Словарь русских синонимов … Словарь синонимов

    ЭКСПЕРИМЕНТ, эксперимента, муж. (лат. experimentum) (книжн.). Научно поставленный опыт. Химический эксперимент. Физический эксперимент. Произвести эксперимент. || Вообще опыт, попытка. Воспитательная работа не допускает рискованных экспериментов… … Толковый словарь Ушакова

    Эксперимент - Эксперимент ♦ Expérimentation Активный, обдуманный опыт; стремление не столько слышать реальную действительность (опыт) и даже не столько вслушиваться в нее (наблюдение), сколько пытаться задавать ей вопросы. Существует особое понятие… … Философский словарь Спонвиля

| Планирование уроков на учебный год | Основные этапы моделирования

Урок 2
Основные этапы моделирования





Изучив эту тему, вы узнаете:

Что такое моделирование;
- что может служить прототипом для моделирования;
- какое место занимает моделирование в деятельности человека;
- каковы основные этапы моделирования;
- что такое компьютерная модель;
- что такое компьютерный эксперимент.

Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.

В школе вы проводите опыты на уроках биологии, химии, физики, географии.

Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещают в термостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос - не велика потеря при разрушении. А если самолет или ракета?

Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение, тем не менее, очень велико.

С развитием компьютерной техники появился новый уникальный метод исследования - компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана эксперимента и проведение исследования.

План эксперимента

План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели. 

Тестирование - процесс проверки правильности построенной модели.

Тест - набор исходных данных, позволяющий определить пра- - вильность построения мЪдели.

Чтобы быть уверенным в правильности получаемых результатов моделирования, надо: ♦ проверить разработанный алгоритм построения модели; ♦ убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделировании.

Для проверки правильности алгоритма построения модели используется тестовый набор исходных данных, для которых конечный результат заранее известен или предварительно определен другими способами.

Например, если вы используете при моделировании расчетные формулы, то надо подобрать несколько вариантов исходных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты моделирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их расхождения. Тестовые данные могут совершенно не отражать реальную ситуацию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание.

Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо подобрать тестовый пример с реальными исходными данными.

Проведение исследования

После тестирования, когда у вас появилась уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования. 

В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.

Схема подготовки и проведения компьютерного эксперимента приведена на рисунке 11.7.

Рис. 11.7. Схема компьютерного эксперимента

Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. На рисунке 11.2 видно, что этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению задачи.

Основой выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощённое построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели у то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:

О, сколько нам открытий чудных
Готовят просвещенья дух
И опыт, сын ошибок трудных,
И гений, парадоксов друг,
И случай, бог изобретатель...

Контрольные вопросы и задания

1. Назовите два основных типа постановки задач моделирования.

2. В известном «Задачнике» Г. Остера есть следущая задача:

Злая колдунья, работая не покладая рук, превращает в гусениц по 30 принцесс в день. Сколько дней ей понадобится, чтобы превратить в гусениц 810 принцесс? Сколько принцесс в день придется превращать в гусениц, чтобы управиться с работой за 15 дней?
Какой вопрос можно отнести к типу «что будет, если...», а какой - к типу «как сделать, чтобы...»?

3. Перечислите наиболее известные цели моделирования.

4. Формализуйте шутливую задачу из «Задачника» Г. Остера:

Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая - 5 км/час.
Через сколько времени начнется драка? 

5. Назовите как можно больше характеристик объекта «пара ботинок ». Составьте информационную модель объекта для разных целей:
■ выбор обуви для туристского похода;
■ подбор подходящей коробки для обуви;
■ покупка крема для ухода за обувью.

6. Какие характеристики подростка существенны для рекомендации по выбору профессии?

7. По каким причинам компьютер широко используется в моделировании?

8. Назовите известные вам инструменты компьютерного моделирования.

9. Что такое компьютерный эксперимент? Приведите пример.

10. Что такое тестирование модели?

11. Какие ошибки встречаются в процессе моделирования? Что надо делать, когда ошибка обнаружена?

12. В чем заключается анализ результатов моделирования? Какие выводы обычно делаются?

Муниципальное автономное

образовательное учреждение

«Средняя общеобразовательная школа №31»

г.Сыктывкара


Компьютерный эксперимент

в курсе физики средней школы.

Рейзер Е.Э.

Республика Коми

г.Сыктывкар

СОДЕРЖАНИЕ:

I . Введение

II . Виды и роль эксперимента в обучающем процессе.

III . Использование компьютера на уроках физики.

V . Заключение.

VI . Глоссарий.

VII . Список литературы.

VIII . Приложения:

1. Классификация физического эксперимента

2. Итоги анкетирования обучающихся

3. Использование компьютера во время проведения демонстрационного эксперимента и решения задач

4. Использование компьютера во время проведения

Лабораторных и практических работ

КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

В КУРСЕ ФИЗИКИ СРЕДНЕЙ ШКОЛЫ.

Настало время вооружить

учителя новым инструментом,

и результат незамедлительно

скажется в последующих поколениях.

Поташник М.М.,

академик РАО, доктор пед.наук, профессор.

I . Введение.

Физика – наука экспериментальная. Научная деятельность начинается с наблюдения. Наиболее ценно наблюдение в том случае, когда влияющие на него условия точно контролируются. Это возможно, если условия постоянны, известны и их можно изменять по желанию наблюдателя. Наблюдение, проведенное в строго контролируемых условиях, называется экспериментом. А для точных наук характерна органическая связь наблюдений и эксперимента с определением численных значений характеристик исследуемых объектов и процессов.

Эксперимент является важнейшей частью научных исследований, основой которого служит научно поставленный опыт с точно учитываемыми и управляемыми условиями. Само слово эксперимент происходит от латинского experimentum - проба, опыт. В научном языке и исследовательской работе термин «эксперимент» обычно используется в значении, общем для целого ряда сопряженных понятий: опыт, целенаправленное наблюдение, воспроизведение объекта познания, организация особых условий его существования, проверка предсказания. В это понятие вкладывается научная постановка опытов и наблюдение исследуемого явления в точно учитываемых условиях, позволяющих следить за ходом явлений и воссоздавать его каждый раз при повторении этих условий. Само по себе понятие «эксперимент» означает действие, направленное на создание условий в целях осуществления того или иного явления и по возможности наиболее частого, т.е. не осложняемого другими явлениями. Основной целью эксперимента являются выявление свойств исследуемых объектов, проверка справедливости гипотез и на этой основе широкое и глубокое изучение темы научного исследования

До XVIII в., когда физика была час­ тью философии, ученые считали логи­ ческие выводы ее основой, и только мысленный эксперимент мог быть для них убедителен в формировании воззре­ ний на устройство мира, основных фи­ зических законов. Галилей, которого справедливо считают отцом эксперимен­ тальной физики, ничего не смог дока­зать современникам, проводя опыты с падением шаров разной массы с Пизан ской башни. «Затея Галилея вызвала пре­небрежительные реплики и недоумение». Мысленный эксперимент по анализу поведения трех тел равной мас­ сы, два из которых были связаны неве­ сомой нитью, оказался для его коллег более убедительным, нежели непосред­ ственный опыт.

Подобным образом Галилей доказал и справедливость закона инерции с двумя наклонными плоскостями и движущим­ся по ним шарам. Сам И.Ньютон пы­тался обосновать известные и открытые им законы в своей книге «Математиче­ские основы натурфилософии», приме­няя схему Евклида, вводя аксиомы и на их основе теоремы. На обложке этой книги

изображена Земля, гора (Г) и пуш­ка (П ) (рис. 1).


Из пушки запускаются ядра, которые падают на разных рассто­яниях от горы в зависимости от их на­чальной скорости. При некоторой ско­рости ядро описывает полный оборот вокруг Земли. Ньютон своим рисунком подводил к мысли о возможности созда­ния искусственных спутников Земли, которые и были созданы через несколько столетий.

На данном этапе развития физики мысленный эксперимент являлся необ­ходимым, так как из-за отсутствия не­обходимых приборов и технологической базы реальный эксперимент был невоз­можен. Мысленный эксперимент использо­вался и Д.К.Максвеллом при создании системы основных уравнений электро­динамики (хотя использовались и ре­зультаты натурных экспериментов, про­веденных ранее М.Фарадеем), и А Эйн­штейном при разработке теории относительности.

Таким образом, мысленные эксперименты являются одной из составных частей разработки новых теорий. Боль­шинство физических экспериментов было первоначально смоделировано и проведены мысленно, а затем уже ре­ально. Ниже нами будут приведены примеры мысленных экспериментов, которые сыграли важную роль в развитии физики.

В 5 в. до н.э. философ Зенон создал логическое противоречие между реальными явлениями и тем, что можно получить путём логических выводов. Он предложил мысленный эксперимент, в котором показывал, что стрела никогда не догонит утку (рис.2).

Г.Галилей в своей научной деятельности прибегал к рассуждениям, основанным на здравом смысле, ссылаясь на так называемые «мысленные опыты». Последователи Аристотеля, опровергая идеи Галилея, приводили ряд «научных» доводов. Однако Галилей был большим мастером полемики, и его контраргумен­ты оказались неоспоримы. Логические рассуждения для ученых той эпохи были более убедительны, чем эксперименталь­ные доказательства.

«Меловая» физика, как и другие способы преподавания физики, не соответствующие экспериментальному методу познания природы, стала наступать на российскую школу лет 10–12 назад. В тот период уровень обеспеченности оборудованием школьных кабинетов опустился ниже 20% от необходимого; практически прекратила работать промышленность, выпускавшая учебное оборудование; из смет школ исчезла так называемая защищенная статья бюджета «на оборудование», которая могла расходоваться только по своему прямому назначению. Когда критическая ситуация была осознана, в Федеральную программу «Учебная техника» была включена подпрограмма «Кабинет физики». В рамках выполнения программы восстановлено производство классического оборудования и разработано современное школьное оборудование, в том числе с использованием последних информационных и компьютерных технологий. Наиболее радикальные изменения произошли в оборудовании для фронтальных работ, разработаны и выпускаются массовым тиражом тематические комплекты оборудования по механике, молекулярной физике и термодинамике, электродинамике, оптике (в школе имеется полный комплект этого нового оборудования по данным разделам).

Изменились роль и место самостоятельного эксперимента в концепции физического образования: эксперимент является не только средством формирования практических умений, он становится способом освоения метода познания. В школьную жизнь «ворвался» с огромнейшей скоростью компьютер.

Компьютер открывает новые пути в развитии мышления, предоставляя новые возможности для активного обучения. С помощью компьютера проведение уроков,

упражнений, контрольных и лабораторных работ, а также учет успеваемости становятся более эффективными, а огромный поток информации - легкодоступным. Использование компьютера на уроках физики также помогает реализовать принцип личной заинтересованности ученика в усвоении материала и многие другие принципы развивающего обучения.
Однако, на мой взгляд, компьютер не может полностью заменить учителя. Учитель имеет возможность заинтересовать учеников, пробудить у них любознательность, завоевать их доверие, он может направить их внимание на те или иные аспекты изучаемого предмета, вознаградить их усилия и заставить учиться. Компьютер никогда не сможет взять на себя такую роль учителя.

Широк диапазон использования компьютера и во внеклассной работе: он способствует развитию познавательного интереса к предмету, расширяет возможность самостоятельного творческого поиска наиболее увлеченных физикой учащихся.

II . Виды и роль эксперимента в обучающем процессе.

Основные виды физического эксперимента:

    Демонстрационный опыт;

    Фронтальная лабораторная работа;

    Физический практикум;

    Экспериментальная задача;

    Домашняя экспериментальная работа;

    Эксперимент с использованием компьютера (новый вид).

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в следующем:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: умение наблюдать явления, умение выдвигать гипотезы, умение планировать эксперимент, умение анализировать результаты, умение устанавливать зависимости между величинами, умение делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физики и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях "работу руками". Это достигается при выполнении учащимися лабораторного физического эксперимента , когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе. Ко второй группе относятся умения собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе с приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

- это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Соответственно в кабинете должно быть 15-20 комплектов приборов для фронтальных лабораторных работ. Общее количество таких приборов будет составлять около тысячи штук. Названия фронтальных лабораторных работ приводятся в учебных программах. Их достаточно много, они предусмотрены практически по каждой теме курса физики. Перед проведением работы учитель выявляет подготовленность учащихся к сознательному выполнению работы, определяет вместе с ними ее цель, обсуждает ход выполнения работы, правила работы с приборами, методы вычисления погрешностей измерений. Фронтальные лабораторные работы не очень сложны по содержанию, тесно связаны хронологически с изучаемым материалом и рассчитаны, как правило, на один урок. Описания лабораторных работ можно найти в школьных учебниках по физике.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики, развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента, формирования у них самостоятельности при решении задач, связанных с экспериментом. Физический практикум не связан по времени с изучаемым материалом, он проводится, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводится два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ. К каждой работе учитель должен составить инструкцию, которая должна содержать название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

На сегодняшний день интерес к экс­ периментальной задаче продиктован еще и причинами социального и экономиче­ ского характера. В связи со сложившим­ся «недофинансированием» школы, мо­ ральным и физическим старением лабо­ раторной базы кабинетов именно экс­ периментальная задача может сыграть для школы роль запасного пути, кото­ рый способен спасти физический экс­ перимент. Гарантом этого служит удиви­ тельное сочетание простоты оборудова­ ния с серьезной и глубокой физикой, которое можно наблюдать на примере лучших образцов этих задач. Органичное вписывание экспериментальной задачи в традиционную схему преподавания школьного курса физики становится возможным лишь при использовании соответствующей

технологии.

приучают учащихся к самостоятельному расширению полученных на уроке знаний и добыванию новых, фор­мируют экспериментальные умения че­рез использование предметов домашне­го обихода и самодельных приборов; развивают интерес; осуществляют обрат­ную связь (результаты, полученные во время ДЭР, могут быть проблемой, ре­шаемой на следующем уроке или могут слу­жить закреплением материала).

Все выше названные основные виды учебного физического эксперимента должны быть обязательно дополнены экс­периментом с использованием компьюте­ра, экспериментальными задачами, до­машними экспериментальными работами. Возможности компьютера позволяют
варьировать условия эксперимента, самостоятельно конструировать модели установок и наблюдать за их работой, формировать умение экспериментиро­ вать с компьютерными моделями, про­изводить расчеты в автоматическом режиме.

С нашей точки зрения, этот вид экс­перимента должен дополнять учебный эксперимент на всех этапах деятельностного обучения, так как он способству­ет развитию пространственного воображения и творческого мышления.

III . Использование компьютера на уроках физики.

Физика - наука экспериментальная. Изучение физики трудно представить без лабораторных работ. К сожалению, оснащение физического кабинета не всегда позволяет провести программные лабораторные работы, не позволяет вовсе ввести новые работы, требующие более сложного оборудования. На помощь приходит персональный компьютер, который позволяет проводить достаточно сложные лабораторные работы. В них учитель может по своему усмотрению изменять исходные параметры опытов, наблюдать, как изменяется в результате само явление, анализировать увиденное, делать соответствующие выводы.

Создание персонального компьютера породило новые информационные технологии, заметно повышающие качество усвоения информации, ускоряющие доступ к ней, позволяющие применять вычислительную технику в самых разных областях деятельности человека.

Скептики возразят, что сегодня персональный мультимедийный компьютер слишком дорог, чтобы им укомплектовать средние учебные заведения. Однако персональный компьютер - детище прогресса, а прогресс, как известно, временные экономические трудности остановить не могут (затормозить - да, остановить - никогда). Чтобы не отстать от современного уровня мировой цивилизации, следует внедрять его по возможности и в наших, российских школах.

Итак, компьютер из экзотической машины превращается в еще одно техническое средство обучения, пожалуй, самое мощное и самое эффективное из всех существовавших до сих пор технических средств, которыми располагал учитель.

Хорошо известно, что курс физики средней школы включает в себя разделы, изучение и понимание которых требует развитого образного мышления, умения анализировать, сравнивать. В первую очередь речь идет о таких разделах, как "Молекулярная физика", некоторые главы "Электродинамики", "Ядерная физика", "Оптика" и др. Строго говоря, в любом разделе курса физики можно найти главы, трудные для понимания.

Как показывает 14-летний опыт работы, учащиеся не владеют необходимыми мыслительными навыками для глубокого понимания явлений, процессов, описанных в данных разделах. В таких ситуациях на помощь преподавателю приходят современные технические средства обучения, и в первую очередь - персональный компьютер.

Идея использования персонального компьютера для моделирования различных физических явлений, демонстрации устройства и принципа действия физических приборов возникла несколько лет назад, как только вычислительная техника появилась в школе. Уже первые уроки с использованием компьютера показали, что с их помощью можно решить ряд проблем, всегда существовавших в преподавании школьной физики.

Перечислим некоторые из них. Многие явления в условиях школьного физического кабинета не могут быть продемонстрированы. К примеру, это явления микромира либо быстро протекающие процессы, либо опыты с приборами, отсутствующими в кабинете. В результате учащиеся испытывают трудности в их изучении, так как не в состоянии мысленно их представить. Компьютер может не только создать модель таких явлений, но также позволяет изменять условия протекания процесса, "прокрутить" с оптимальной для усвоения скоростью.

Изучение устройства и принципа действия различных физических приборов - неотъемлемая часть уроков физики. Обычно, изучая тот или иной прибор, учитель демонстрирует его, рассказывает принцип действия, используя при этом модель или схему. Но часто учащиеся испытывают трудности, пытаясь представить всю цепь физических процессов, обеспечивающих работу данного прибора. Специальные компьютерные программы позволяют "собрать" прибор из отдельных деталей, воспроизвести в динамике с оптимальной скоростью процессы, лежащие в основе принципа его действия. При этом возможно многократное "прокручивание" мультипликации.

Безусловно, компьютер можно применять и на уроках других типов: при самостоятельном изучении нового материала, при решении задач, во время контрольных работ.

Необходимо также отметить, что использование компьютеров на уроках физики превращает их в настоящий творческий процесс, позволяет осуществить принципы развивающего обучения.

Несколько слов нужно сказать о разработке компьютерных уроков. Нам известны пакеты программ по "школьной" физике, разработанные в Воронежском университете, на физмате МГУ, имеется в распоряжении авторов электронный учебник на лазерном диске "Физика в картинках", получивший широкую известность. Большинство из них сделано профессионально, имеют красивую графику, содержат хорошие мультипликации, они многофункциональны, словом, имеют массу достоинств. Но в большинстве своем они не вписываются в канву данного конкретного урока. С их помощью невозможно достичь всех целей, поставленных учителем на уроке.

Проведя первые компьютерные уроки, мы пришли к выводу, что они требуют особой подготовки. К таким урокам мы стали писать сценарии, органично "вплетая" в них и настоящий эксперимент, и виртуальный (т.е. реализованный на экране монитора). Особенно хочется отметить, что моделирование различных явлений ни в коем случае не заменяет настоящих, "живых" опытов, но в сочетании с ними позволяет на более высоком уровне объяснить смысл происходящего. Опыт нашей работы показывает, что такие уроки вызывают у учащихся настоящий интерес, заставляют работать всех, даже тех ребят, которым физика даётся с трудом. Качество знаний при этом заметно возрастает. Примеры использования компьютера на уроке в качестве ТСО можно продолжать достаточно долго.

Широко используется компьютер как множительная техника для тестирования учащихся и проведения многовариантных (у каждого свое задание) контрольных работ. В любом случае с помощью поисковых программ учитель может найти для себя много интересного в Интернете.

Компьютер является незаменимым помощником на факультативных занятиях, при выполнении практических и лабораторных работ, решении экспериментальных задач. Ученики используют его для обработки результатов своих небольших заданий исследовательского характера: составляют таблицы, строят графики, проводят расчёты, создают простые модели физических процессов. Такое использование компьютера развивает навыки самостоятельного получения знаний, умения анализировать результаты, формирует физическое мышление.

IV . Примеры использования компьютера в разных видах эксперимента.

Компьютер как элемент учебной экспериментальной установки используется на разных этапах урока и практически во всех видах эксперимента (чаще демонстрационный эксперимент и лабораторная работа).

    Урок «Строение вещества» (демонстрационный эксперимент)

Цель: изучить строение вещества в разных агрегатных состояниях, выявить некоторые закономерности строения тел в газовом, жидком и твердом состояниях.

При объяснении нового материала для наглядной демонстрации расположения молекул в разных агрегатных состояниях используется компьютерная анимация.



Компьютер позволяет показать процессы перехода из одного агрегатного состояния в другое, увеличение скорости движения молекул при увеличении температуры, явление диффузии, давление газа.

    Урок решения задач по теме: «Движение под углом к горизонту».

Цель: изучить баллистическое движение, его применение в повседневной жизни.




С помощью компьютерной анимации можно показать, как меняется траектория движения тела (высота и дальность полета) в зависимости от начальной скорости и угла падения. Подобное использование компьютера позволяет сделать это за несколько минут, что экономит время для решения других задач, избавляет учащихся от необходимости делать рисунок к каждой задаче (чего они не очень любят делать).

Модель демонстрирует движение тела, брошенного под углом к горизонту. Можно изменять начальную высоту, а также модуль и направление скорости тела. В режиме «Стробоскоп» на траектории через равные промежутки времени показываются вектор скорости брошенного тела и его проекции на горизонтальную и вертикальную оси.

    Лабораторная работа «Исследование изотермического процесса».

Цель: Экспериментально установить взаимосвязь между давлением и объемом газа при постоянной температуре.

Работа полностью сопровождается компьютером (название, цель, выбор оборудования, порядок выполнения работы, необходимые расчеты). Объектом является воздух в трубке. Рассматриваются параметры в двух состояниях: исходном и сжатом. Делаются соответствующие расчеты. Сравниваются результаты, по полученным данным строится график.

    Экспериментальная задача: определение числа Пи путем взвешивания.

Цель: определить значение числа Пи разными способами. Показать, что оно может быть равно 3,14 путем взвешивания.

Для проведения работы вырезаются квадрат и круг из одного материала так, чтобы радиус круга равнялся стороне квадрата, взвешиваются эти фигуры. Через отношение масс круга и квадрата вычисляется число Пи.

    Домашний эксперимент по изучению характеристик колебательного движения.

Цель: закрепить полученные знания на уроке о периоде и частоте колебаний математического маятника.

Модель колебательного маятника мастерится из подручных средств (небольшое тело подвешивается на веревку), для эксперимента необходимо иметь часы с секундной стрелкой. Сосчитав 30 колебаний за определенное время, производят расчеты периода и частоты. Можно провести эксперимент с разными телами, установив, что от тела характеристики колебаний не зависят. А также, проведя опыт с нитью разной длины, можно установить соответствующую зависимость. Все домашние результаты обязательно обсуждаются в классе.

    Экспериментальная задача: расчет работы и кинетической энергии.

Цель: показать, как зависит значение механической работы и кинетической энергии от различных условий задачи.

При помощи компьютера очень быстро выявляется зависимость между силой тяжести (весом тела), силой тяги, углом приложения силы, коэффициентом трения.



В модели иллюстрируется понятие механической работы на примере движения бруска на плоскости с трением под действием внешней силы, направленной под некоторым углом к горизонту. Изменяя параметры модели (массу бруска т, коэффициент трения, модуль и направление действующей силы F ), можно проследить за величиной работы, совершаемой при движении бруска, силой трения и внешней силой. Убедитесь в компьютерном эксперименте, что сумма этих работ равна кинетической энергии бруска. Обратите внимание, что работа силы трения А всегда отрицательна.

Подобные задачи можно использовать при контроле знаний учащихся. Компьютер быстро позволяет менять параметры задачи, создавая тем самым большое количество вариантов (исключается списывание). Преимущество такой работы - быстрая проверка. Работа может быть проверена сразу в присутствии учеников. Учащиеся получают результат и могут сами оценить свои знания.

    Подготовка к ЕГЭ.

Цель: научить детей быстро и правильно отвечать на вопросы теста.

На сегодняшний день разработана программа подготовки учеников к сдаче единого государственного экзамена. В ней собраны тестовые задания разного уровня сложности по всем разделам школьного курса физики.

V . Заключение.

Преподавание физики в школе под­разумевает постоянное сопровождение курса демонстрационным эксперимен­том. Однако в современной школе про­ведение экспериментальных работ по физике часто затруднено из-за недостат­ка учебного времени, отсутствия совре­менного материально-технического ос­нащения. И даже при полной укомплек­тованности лаборатории кабинета физи­ки требуемыми приборами и материала­ми, реальный эксперимент требует зна­чительно большего времени как на под­готовку и проведение, так и на анализ результатов работы При этом в силу своей специфики (значительные по­грешности измерений, временные огра­ничения урока и т п.) реальный экспе­римент часто не реализовывает основ­ное свое предназначение - служить ис­точником знаний о физических законо­мерностях и законах. Все выявляемые зависимости носят лишь приближенный характер, зачастую правильно рассчитан­ная погрешность превышает сами изме­ряемые величины.

Компьютерный эксперимент спосо­бен дополнить «экспериментальную» часть курса физики и значительно по­высить эффективность уроков. При его использовании можно вычленить глав­ное в явлении, отсечь второстепенные факторы, выявить закономерности, мно­гократно провести испытание с изменя­емыми параметрами, сохранить резуль­таты и вернуться к своим исследовани­ям в удобное время. К тому же, в ком­пьютерном варианте можно провести значительно большее количество экспе­риментов. Данный вид эксперимента реализуется с помощью компьютерной модели того или иного закона, явления, процесса и т.д. Работа с этими моделя­ми открывает перед учащимися огром­ные познавательные возможности, делая их не только наблюдателями, но и ак­тивными участниками проводимых экс­периментов.

В большинстве интерактивных моде­лей предусмотрены варианты изменений в широких пределах начальных параме­тров и условий опытов, варьирования их временного масштаба, а также модели­рования ситуаций, недоступных в реаль­ных экспериментах.

Еще один позитивный момент в том, что компьютер предоставляет уникаль­ную, не реализуемую в реальном физи­ческом эксперименте, возможность ви­зуализации не реального явления при­роды, а его упрощенной теоретической модели, что позволяет быстро и эффек­тивно находить главные физические за­кономерности наблюдаемого явления. Кроме того, учащийся может одновре­менно с ходом эксперимента наблюдать построение соответствующих графичес­ких зависимостей. Графический способ отображения результатов моделирования облегчает учащимся усвоение больших объемов получаемой информации. По­добные модели представляют особую ценность, так как учащиеся, как прави­ло, испытывают значительные труднос­ти при построении и чтении графиков.

Также необходимо учитывать, что да­леко не все процессы, явления, истори­ческие опыты по физике учащийся спо­собен представить себе без помощи вир­туальных моделей (например, цикл Карно, модуляция и демодуляция, опыт Майкельсона по измерению скорости света, опыт Резерфорда и т.д.). Интер­активные модели позволяют ученику увидеть процессы в упрощенном виде, представить себе схемы установок, по­ставить эксперименты, вообще невоз­можные в реальной жизни, например, управление работой ядерного реактора.

Сегодня уже существует целый ряд педагогических программных средств (ППС), в той или иной форме содержа­щих интерактивные модели по физике. К сожалению, ни одна из них не ориен­тирована непосредственно на применение в школе. Одни модели перегружены возможностями изменения параметров из-за ориентированности на применение в ВУЗах, в других программах интерак­тивная модель является лишь элементом, иллюстрирующим основной материал. Кроме того, модели разбросаны по разным ППС. Например, «Физика в кар­тинках» компании «Физикон», являясь наиболее оптимальной для проведения фронтального компьютерного эксперимента, построена на устаревших плат­формах, не имеет поддержки использо­вания в локальных сетях. Другие ППС, такие как «Открытая физика» той же компании, содержат одновременно с моделями огромный массив информаци­онных материалов, который невозмож­но отключить на время проведения ра­боты на уроке. Все это значительно ус­ложняет отбор и использование компью­терных моделей при проведении уроков физики в общеобразовательной школе.

Главное - для эффективного при­менения компьютерного эксперимента требуются ППС, специально ориентиро­ванные на использование в средней школе. В последнее время наметилась тенденция к созданию специализирован­ных ППС для школы в рамках федераль­ных проектов, таких, как конкурсы раз­работчиков учебного программного обеспечения, проводимые Националь­ным фондом подготовки кадров. Возможно, уже в ближайшие годы мы увидим ППС, комплексно поддерживающие компьютерный эксперимент в курсе физики средней школы. Все эти моменты я и попыталась раскрыть в своей работе.

VI . Глоссарий.

Эксперимент – это чувственно-предметная деятельность в науке.

Физический эксперимент - это наблюдение и анализ исследуемых явлений в определенных условиях, позволяющих следить за ходом явлений и воссоздать его всякий раз при фиксированных условиях.

Демонстрация – это физический эксперимент, представляющий физические явления, процессы, закономерности, воспринимаемые зрительно.

Фронтальные лабораторные работы – вид практических работ, выполняемых в процессе изучаемого программного материала, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование.

Физический практикум практическая работа, выполняемая учащимися в завершение предыдущих разделов курса (или в конце года), на более сложном оборудовании, с большей долей самостоятельности, чем на фронтальной лабораторной работе.

Домашние экспериментальные работы – простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного руководства со стороны учителя.

Экспериментальные задачи – задачи, в которых эксперимент служит средством определения некоторых исходных величин, необходимых для решения; дает ответ на поставленный в ней вопрос или является средством проверки сделанных согласно условию расчетов.

VII . Список литературы:

1. Башмаков Л.И., С. Н. Поздняков, Н. А Резник "Информационная среда обучения", Санкт - Петербург: "Свет", с.121, 1997.

2 Белостоцкий П.И., Г. Ю. Максимова, Н. Н. Гомулина "Компьютерные технологии: современный урок физики и астрономии". Газета "Физика" № 20, с. 3, 1999.

3. Буров В.А. «Демонстрационный эксперимент по физике в средней школе». Москва Просвещение 1979г

4. Бутиков Е.И. Основы классической динамики и компьютерное моделирование. Материалы 7 научно-методической конференции, Академическая Гимназия, Санкт - Петербург - Старый Петергоф, с. 47, 1998.

5. Винницкий Ю.А., Г.М. Нурмухамедов «Компьютерный эксперимент в курсе физики средней школы». Журнал «Физика в школе» №6, с. 42, 2006.

6. Голелов А.А. Концепции современного естествознания: учебное пособие. Практикум. – М.: Гуманит.изд.центр ВЛАДОС, 1998

7. Кавтрев А.Ф. "Методика использования компьютерных моделей на уроках физики". Пятая международная конференция "Физика в системе современного образования" (ФССО-99), тезисы докладов, том 3, Санкт - Петербург: "Изд-во РГПУ им. А. И. Герцена", с. 98-99, 1999.

8. Кавтрев А.Ф. "Компьютерные модели в школьном курсе физики". Журнал "Компьютерные инструменты в образовании", Санкт - Петербург: "Информатизация образования", 12, с. 41-47, 1998.

9. Теория и методика обучения физике в школе. Общие вопросы. Под редакцией С.Е. Каменейкого, Н.С. Пурышевой. М: «Академия», 2000

10. Трофимова Т.И. «Курс физики», изд. «Высшая школа», М., 1999

11. Чирцов А.С. Информационные технологии в обучении физике. Журнал "Компьютерные инструменты в образовании", Санкт - Петербург: "Информатизация образования", 12, с. З, 1999.

Приложение № 1

Классификация физического эксперимента



Приложение №2

Итоги анкетирования обучающихся.

Среди учащихся 5 к,6 а, 7 – 11 классов проведено анкетирование по следующим вопросам:

    Какую роль играет для вас эксперимент при изучении физики?

    В программе создано 107 моделей, которые можно использовать при объяснении нового материала и решении экспериментальных задач. Хочу привести несколько примеров которые я использую на своих уроках.

    Фрагмент урока «Ядерные реакции. Деление ядер».

    Цель: сформировать понятия ядерной реакции, продемонстрировать их разнообразие. Развивать представление о сущности данных процессов.

    Компьютер используется при объяснении нового материала для более наглядной демонстрации изучаемых процессов, позволяет быстро менять условия реакций, дает возможность вернуться к прежним условиям.


    Настоящая модель демонстрирует

    различные типы ядерных превращений.

    Ядерные превращения возникают как вследствие

    процессов радиоактивного распада ядер, так и

    вследствие ядерных реакций, сопровождающихся

    делением или синтезом ядер.

    Изменения, происходящие в ядрах, можно разбить

    на три группы:

    1. изменение одного из нуклонов в ядре;

      перестройка внутренней структуры ядра;

      перегруппировка нуклонов из одних ядер в другие.

    К первой группе относятся различные виды бета-распада, когда один из нейтронов ядра превращается в протон или наоборот. Первый (более частый) вид бета-распада происходит с испусканием электрона и электронного антинейтрино. Второй вид бета-распада происходит или путем испускания позитрона и электронного нейтрино, или путем захвата электрона и испускания электронного нейтрино (захват электрона происходит с одной из ближайших к ядру электронных оболочек). Заметим, что в свободном состоянии протон не может распасться на нейтрон, позитрон и электронное нейтрино - для этого необходима дополнительная энергия, которую он получает у ядра. Общая энергия ядра тем не менее понижается при превращении протона в нейтрон в процессе бета-распада. Это происходит за счет снижения энергии кулоновского отталкивания между протонами ядра (которых становится меньше).

    Ко второй группе следует отнести гамма-распад, при котором ядро, первоначально находившееся в возбужденном состоянии, сбрасывает излишек энергии, излучая гамма-квант. К третьей группе относятся альфа-распад (испускание исходным ядром альфа-частицы - ядра атома гелия, состоящего из двух протонов и двух нейтронов), деление ядра (поглощение ядром нейтрона с последующим распадом на два более легких ядра и испускание нескольких нейтронов) и синтез ядра (когда в результате столкновения двух легких ядер образуется более тяжелое ядро и, возможно, остаются легкие осколки или отдельные протоны или нейтроны).

    Обратите внимание, что при альфа - распаде ядро испытывает отдачу и заметно смещается в сторону, противоположную направлению вылета альфа-частицы. В то же время отдача при бета-распаде гораздо меньше и в нашей модели не заметна совсем. Это вызвано тем, что масса электрона в тысячи (и даже в сотни тысяч раз - для тяжелых атомов) меньше, нежели масса ядра.

    Фрагмент урока «Ядерный реактор»

    Цель: сформировать представления о строении ядерного реактора, продемонстрировать его работу с помощью компьютера.


    Компьютер позволяет менять условия

    протекания реакций в реакторе. Убрав надписи,

    можно проверить знания учащихся строения

    реактора, показать условия, при которых

    возможен взрыв.

    Ядерный реактор - это устройство,

    предназначенное для превращения энергии

    атомного ядра в электрическую энергию.

    В ядре реактора находится радиоактивное

    вещество (обычно, уран или плутоний).

    Энергия, выделяемая за счет а - распада этих

    атомов, нагревает воду. Получающийся водяной пар устремляется в паровую турбину; за счет ее вращения в электрогенераторе вырабатывается электрический ток. Теплая вода после соответствующей очистки выливается в расположенный рядом водоем; оттуда же в реактор поступает холодная вода. Специальный герметичный кожух защищает окружающую среду от смертоносного излучения.

    Специальные графитовые стержни поглощают быстрые нейтроны. С их помощью можно управлять ходом реакции. Нажмите кнопку "Поднять" (это можно сделать, только если будут включены насосы, закачивающие холодную воду в реактор) и включите "Условия процесса". После того, как стержни будут подняты, начнется ядерная реакция. Температура Т внутри реактора возрастет до 300° С, и вода вскоре начнет кипеть. Взглянув на амперметр в правом углу экрана, можно убедиться, что реактор начал вырабатывать электрический ток. Задвинув стержни обратно, можно приостановить цепную реакцию.

    Приложение №4

    Использование компьютера при выполнении лабораторных работ и работ физпрактикума.

    Существует 4 СД с разработками 72 лабораторных работ, которые облегчают работу учителя, делают уроки более интересными и современными. Данные разработки могут быть использованы при проведении физического практикума, т.к. тематика некоторых из них выходит за рамки школьной программы. Вот некоторые примеры. Название, цель, оборудование, поэтапное выполнение работы – все это проецируется на экран с помощью компьютера.


    Лабораторная работа: «Исследование изобарного процесса».

    Цель: экспериментально установить взаимосвязь объема и

    температуры газа определенной массы в различных его

    состояниях.

    Оборудование: лоток, трубка – резервуар с двумя кранами,

    термометр, калориметр, измерительная лента.

    Объектом исследования является воздух в трубке –

    резервуаре. В исходном состоянии его объем определяют по

    длине внутренней полости трубки. Трубку укладывают виток к витку в калориметр, верхний кран открыт. Наливают в калориметр воду 55 0 - 60 0 С. Наблюдают образование пузырьков. Образовываться они будут до тех пор, пока температура воды и воздуха в трубке не сравняются. Температуру измеряют лабораторным термометром. Во второе состояние воздух переводят, налив в калориметр холодную воду. После установления теплового равновесия измеряют температуру воды. Объем во втором состоянии измеряют по его длине в трубке (исходная длина минус длина вошедшей воды).

    Зная параметры воздуха в двух состояниях, устанавливают связь изменения его объема с изменением температуры при постоянном давлении.

    Урок - практикум: «Измерение коэффициента поверхностного натяжении.

    Цель: отработать один из приемов определения коэффициента поверхностного натяжения.

    Оборудование: весы, лоток, стакан, капельница с водой.

    Объектом исследования является вода. Весы приводят в рабочее положение, уравновешивают. С их помощью определяют массу стакана. Из пепельницы в стакан капают примерно 60 - 70 капель воды. Определяют массу стакана с водой. По разности масс определяют массу воды в стакане. Зная количество капель, можно определить массу одной капли. Диаметр отверстия капельницы указан на её капсуле. По формуле вычисляют коэффициент поверхностного натяжения воды. Сравнивают полученный результат с табличным значением.

    Для сильных учащихся можно предложить провести дополнительно опыты с растительным маслом.

Одним из наиболее перспективных направлений использования информационных технологий в физическом образовании является компьютерное моделирование физических процессов и явлений, направленное на повышение эффективности обучения физике. Компьютерные модели легко вписываются в традиционный урок, позволяя учителю продемонстрировать на экране компьютера многие физические эффекты, а также позволяют организовать новые нетрадиционные виды учебной деятельности.

Скачать:


Предварительный просмотр:

Возможность компьютера для демонстрационного эксперимента

“Для решения задачи развития творческих способностей школьников при обучении физике необходимо, прежде всего, знать особенности творческого процесса в развитии этой науки и её технического применения”.

(В.Г. Разумовский)

Важнейшей задачей школы, в том числе и преподавания физики, является формирование личности, способной ориентироваться в потоке информации в условиях непрерывного образования. Осознание общечеловеческих ценностей возможно только при соответствующем познавательном, нравственном, этическом и эстетическом воспитании личности. В связи с этим первую цель можно конкретизировать более частными целями: воспитание у школьников в процессе деятельности положительного отношения к науке вообще и к физике в частности; развитие интереса к физическим знаниям, научно - популярным статьям, жизненным проблемам. Физика является основой естествознания и современного научно - технического прогресса, что определяет следующие конкретные цели обучения: осознание учащимися роли физики в науке и производстве, воспитание экологической культуры, понимание нравственных и этических проблем, связанных с физикой.

Физика – это тот предмет, где наглядность играет важную роль в становлении научного мировоззрения учеников, формированию в их сознании единой картины мира. Преподавание физики, в силу особенностей самого предмета, представляет собой благоприятную почву для применения современных информационных технологий. Использование компьютера в качестве эффективного средства обучения существенно расширяет возможности педагогических технологий: физические компьютерные энциклопедии, интерактивные курсы, всевозможные программы, виртуальные опыты и лабораторные работы позволяют повысить мотивацию учащихся к изучению физики.

Одним из наиболее перспективных направлений использования информационных технологий в физическом образовании является компьютерное моделирование физических процессов и явлений, направленное на повышение эффективности обучения физике. Компьютерные модели легко вписываются в традиционный урок, позволяя учителю продемонстрировать на экране компьютера многие физические эффекты, а также позволяют организовать новые нетрадиционные виды учебной деятельности.

Когда же следует использовать компьютерные программы на уроках физики? Прежде всего, необходимо осознавать, что применение компьютерных технологий в образовании оправдано только в тех случаях, в которых возникает существенное преимущество по сравнению с традиционными формами обучения. Одним из таких случаев является преподавание физики с использование компьютерных моделей.

На уроках физики невозможно обойтись без демонстрационного эксперимента, но не всегда материальная база кабинета соответствует требованиям современного кабинета физики. И поэтому здесь на помощь приходит компьютерный эксперимент. Компьютер становиться помощником не только ученика, но и учителя.

Преимущество работы ученика с программным обеспечением состоит в том, что этот вид деятельности стимулирует исследовательскую и творческую деятельность, развивает познавательные интересы учеников. Программы могут быть полезными при подготовке к лабораторным занятиям с реальным оборудованием и окажутся незаменимыми при его отсутствии. Интерактивные опыты можно использовать для демонстрации на уроке. Это позволит решить вопросы, связанные с недостатком лабораторного оборудования, оптимально организовать рабочее время. Также будет эффективным использование интерактивных лабораторных работ при самостоятельной работе учащихся. Пособия помогут любознательным ученикам просмотреть ход работы в нужном режиме, подробнее остановиться на отдельных этапах опытов.

Компьютерные модели позволяют получать в динамике наглядные запоминающиеся иллюстрации физических экспериментов и явлений, воспроизвести их тонкие детали, которые могут ускользать при наблюдении реальных экспериментов. Компьютерное моделирование позволяет изменять временной масштаб, варьировать в широких пределах параметры и условия экспериментов, а также моделировать ситуации, недоступные в реальных экспериментах. Некоторые модели позволяют выводить на экран графики временной зависимости величин, описывающих эксперименты, причём графики выводятся на экран одновременно с отображением самих экспериментов, что придаёт им особую наглядность и облегчает понимание общих закономерностей изучаемых процессов. В этом случае графический способ отображения результатов моделирования облегчает усвоение больших объёмов получаемой информации.

При использовании моделей компьютер предоставляет уникальную, не реализуемую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощённой теоретической модели с поэтапным включением в рассмотрение дополнительных усложняющих факторов, постепенно приближающих эту модель к реальному явлению. Кроме того, не секрет, что возможности организации массового выполнения разнообразных лабораторных работ, причём на современном уровне, в средней школе весьма ограничены по причине слабой оснащённости кабинетов физики. В этом случае работа учащихся с компьютерными моделями также чрезвычайно полезна, так как компьютерное моделирование позволяет создать на экране компьютера живую, запоминающуюся динамическую картину физических опытов или явлений.

В то же время использование компьютерного моделирования не должно рассматриваться в качестве попытки подменить реальные физические эксперименты их симуляциями, так как число изучаемых в школе физических явлений, не охваченных реальными демонстрациями, даже при блестящем оснащении кабинета физики, очень велико. Несколько условный характер отображения результатов компьютерного моделирования можно компенсировать демонстрацией видеозаписей реальных экспериментов, которые дают адекватное представление о реальном протекании физических явлений.

При грамотном использовании компьютерных моделей физических явлений можно достигнуть многого из того, что требуется для неформального усвоения курса физики и для формирования физической картины мира.

Компьютер помогает сделать это и в неблагоприятных условиях, таких как:

  • отсутствие интереса к предмету у ученика, когда он считает, что физика в дальнейшем ему не будет нужна;
  • отсутствие способностей к изучению точных наук;
  • нехватка лабораторного оборудования в школе для демонстрации эксперимента.

Принципы применения компьютерной модели на уроке:

  • Модель явления необходимо использовать лишь в том случае, когда невозможно провести эксперимент, или когда это явление протекает очень быстро и за ним невозможно проследить детально.
  • Компьютерная модель должна помогать разбираться в деталях изучаемого явления или служить иллюстрацией условия решаемой задачи.
  • В результате работы с моделью ученики должны выявить как качественные, так и количественные зависимости между величинами, характеризующими явление.
  • При работе с моделью необходимо предлагать ученикам задания разного уровня сложности, содержащие элементы самостоятельного творчества.

Планирование уроков физики с применением компьютера нужно начинать с тщательного изучения возможностей программных учебных продуктов. Компьютер может быть применён на любом уроке, поэтому необходимо спланировать, что и когда применить для более эффективного результата.

Применение компьютерных программ, проведение перечисленных уроков позволяют успешно сочетать уроки на компьютерах с обычными уроками физики, что обеспечивает своевременное выполнение учебного плана.

Можно выделить принципы компьютерной поддержки уроков физики:

  • Компьютер не может полностью заменить учителя. Только учитель имеет возможность заинтересовать учеников, пробудить в них любознательность, завоевать их доверие, он может направить их внимание на те или иные аспекты изучаемого предмета, вознаградить их усилия и заставить учиться.
  • Реальный эксперимент необходимо проводить всегда, когда это возможно, а компьютерную модель следует использовать, если нет возможности показать данное явление.

Рассмотрим основные возможности применения информационных технологий при проведении уроков.

Итак, компьютерный эксперимент возможно использовать:

Как средство наглядности (особенно для демонстраций, которые невозможно показать в классе или малоэффективных);

Как средство предъявления научных фактов;

Как тренажер для отработки отдельных экспериментальных действий и операций перед выполнением лабораторных работ;

Как средство контроля за уровнем сформированности у школьников умений выполнять отдельные экспериментальные действия.

Необходимо отметить, что компьютерный эксперимент способен дополнить “экспериментальную” часть курса физики и значительно повысить эффективность уроков. При его использовании можно вычленить главное в явлении, отсечь второстепенные факторы, выявить закономерности, многократно провести испытание с изменяемыми параметрами, сохранить результаты и вернуться к своим исследованиям в удобное время. К тому же, в компьютерном варианте можно провести значительно большее количество экспериментов. Данный вид эксперимента реализуется с помощью компьютерной модели того или иного закона, явления, процесса и т.д.

В заключении я хочу сказать, что компьютер стал для меня верным помощником в подготовке и проведении уроков физики, отрыл для меня новые возможности в преподавании, сделал мои уроки более современными и увлекательными.