Индукционная печ. Индукционная печь для плавки металла

ПЛAВИЛЬНAЯ ПEЧЬ - это устройство, предназначенное для плавки шихты черного или цветного металла. Преимущества в том, что плавильная масса отлично перемешивается, если используется индукционная плавильная печь для плавки металла, за счет действия вихревых электрических токов. Нужна плaвильнaя пeчь с хорошими характеристиками? ZAVODRR - транзисторные, тиристорные печи для меди, чугуна, алюминия, стали на 5 - 5000 кг.

Как устроены плaвильные пeчи?

Как устроены плавильные печи? ПЛАВИЛЬНЫЕ ПЕЧИ - это хороший способ переплавлять как черные, так и цветные металлы, такие как алюминий, сталь, чугун, нержавейка, медь. Индукционные плавильные печи имеют не сложное устройство, работают под силой электромагнитного поля, способны равномерно перемешивать металл во время плавки. На индукционных печах имеется крышка, и устройство для слива металла в литейный ковш . Компания РОСИНДУКТОР предлагает плавильные печи транзисторного или тиристорного исполнения на редукторе и гидравлики.

Преимущество печей на редукторе это возможность ручного (аварийного) слива металла, гидравлики - это плавность наклона плавильного узла. Плавильные печи поставляются с одним или двумя плавильными узлами, внутри каждого плавильного узла располагается индуктор. Индуктор выполнен в виде медной катушки состоящей из множества витков, трубка может быть как круглого, так и прямоугольного сечения.

Охлаждение плавильного узла производится при помощи чиллера или градирни . Во время плавки металла необходимо охлаждать два контура: реактор (располагается внутри тиристорного преобразователя) и сам индуктор плавильного узла. Плавильный узел имеет два варианта тигиля: графитовый и футерованный (выполняется вручную из футерованной смеси). Графитовые тигиля используются для переплавки цветных металлов, для черных металлов используют футеровку.


  • Нижний-Новгород

  • Челябинск

  • Красноярск

  • Минск Белоруссия

  • Челябинск

  • Пермь

  • Курган

  • Челябинск

  • Москва

  • Оренбург

  • Казань

  • Волгоград

  • Челябинск

  • Челябинск

  • Луганск

  • Ульяновск

  • Челябинск

  • Архангельск

Плавильные печи - транзисторные

Транзисторная индукционная плавильная печь предназначена для шихты черных и цветных металлов.. Она произведена базе среднечастотного индукционного нагревателя, который собран при помощи MOSFET транзисторов и IGBT модулей, что позволяет экономить на электроэнергии до 35%, имея высокий КПД 95%.

Индукционные плавильные печи на базе транзисторов подходят небольшим промышленным литейным предприятиям, которым необходимо переплавлять небольшое количество металла. Из преимущества плавильных печей можно отметить их мобильность и простоту обслуживания, так как они используют графитовый тигель, поэтому экономиться время на изготовление футеровки и ее сушки.

Компания Росиндуктор предлагает купить индукционные плавильные печи LEGNUM (Тайвань), эти печи являются самыми популярными среди российских покупателей. Тиристорная индукционная плавильная печь Legnum поставляются в двух модификациях на гидравлике и редукторе, основными покупателями являются средние и крупные плавильные производства с производительность от 2000 тонн/год.

В комплекте поставки индукционной плавильной печи идут два плавильных узла, они устанавливаются на заранее подготовленный фундамент. Главными преимуществами является экономичность в среднем на 20-30% экономичнее любых других аналогов представленных на Российском рынке, надежность, современный дизайн и доступная цена. Росиндуктор поставляет индукционные плавильные печи не только во все регионы РОССИИ, а так же страны бывшего СНГ. Обратившись в нашу компанию, будьте уверены индукционная плавильная печь, которую вы покупаете, имеет гарантированно лучшую цену, качество, надежность и условия поставки.

Преимущества плавки металла в плавильных печах является экономичность. Это происходит из-за выделения большого количества тепла при нагреве металла, поэтому печи потребляют относительно не большую мощность. Если делать сравнение между транзисторными и тиристорными печами, то первые экономичнее на 25%, но их стоимость при одинаковой мощности заметно выше. Самые распространённые печи с температурой плавки 1650 °C, при этой температуре можно расплавить любую не тугоплавкую шихту.

Вовремя плавки металла управление печью происходит механическим способом или дистанционно. В обоих случаях управлять процессом должен обученный персонал, имеющий соответствующие разрешения и допуски. Компания Росиндуктор выполняет работы по настройке преобразователей, устранению неисправностей и поддержке плавильного оборудования в рабочем состоянии.

При выборе плавильной печи необходимо задуматься о выборе тигиля. От этого зависит какой металл будет плавиться и сколько плавок он сможет выдержать. В среднем тигель выдерживает от 20 до 60 плавок. Для долгой службы тигиля надо использовать качественные и надежные материалы. Время плавки металла занимает не более 50 минут, на разогретой плавильной печи, поэтому печь небольшого объема и мощности может иметь высокую производительность.

В комплекте поставки плавильные печи включают в себя основные элементы: тиристорный или транзисторный преобразователь частоты, плавильные узлы, конденсаторные батареи, шаблоны, водоохлаждаемые кабеля, пульты управления, системы охлаждения.

Индукционная плавильная печь 5 - 5000 кг

Индукционная плавильная тигельная печь на 5 - 5000 кг плавки, в легком корпусе из алюминиевого сплава, с ТПЧ и редуктором наклона. Индукционная тигельная печь с тиристорным преобразователем предназначена для плавки черных и цветных металлов на литейных заводах. Печь используется для нагрева расплава меди, стали и чугуна. Круглосуточный режим работы печи возможен при необходимости.

Плaвильныe печи для алюминия

Плавильные печи для алюминия имеют свои особенности, ведь температура плавления у алюминия составляет 660 °C, (390 кДж/кг). При выборе печи под алюминий вы должны знать, что тиристорный преобразователь не должен быть мощный, а сам плавильный узел отличается своими размерами от узла для стали или меди в 2-3 раза. Соответственно не рекомендуется в нем производить плавки других металлов.

Плавить алюминиевые сплавы можно в печах с нефтяным, газовым и электрическим обогревом, в пламенных отражательных печах, но самый качественный металл и высокая скорость получается при плавке в индукционных плавильных печах, за счет однородного состава шихты, которая отлично перемешивается в индукционном поле.

Плaвильныe печи для стали

Плавильные печи нагреваются до своей максимальной температуре при плавки стали 1500 - 1600 °С и сопровождается сложными физико-химическими процессом. При переплавке стали, необходимо снизить содержания кислорода, серы и фосфора, образующих оксидные и сульфидные элементы, который снижают качество стали.

Особенность плавки стали в плавильных печах является использование футеровочных смесей, в отличие от плавки меди, где применяется графитовый тигель. Плавильные печи хорошо перемешивают металл, за счет индукционного поля, которое выравнивает химический состав стали.

Указанные выше преимущества, отлично подходят при выплавке легированных сталей, с минимальными потерями легирующих элементов: вольфрама - около 2%, марганца, хрома и ванадия - 5 - 10%, кремния - 10 - 15%, учитывая дефицитность и высокую стоимость легирующих элементов.

Плавка стали имеет следующие особенности и преимущества:

  • Самые важные отливки плавятся, используя метод окисления, ведь во время кипения металла, удаляются все неметаллические включения, и происходит понижение содержания фосфора. Состав шихты берется лома углеродистых сталей или чугуна, для получения среднего содержания углерода 0,5 %;
  • Если вы собираетесь плавить сталь с высоким содержанием марганца, алюминия, хрома надо выбирать кислую футеровку, ведь стойкость тигля будет в два раза выше;
  • Перед началом плавки тигель забивается металлом, но верх не следует забивать плотно, это может привести к образованию сводов и соответственно угару металла, так как шихта будет осаживаться во время плавки нижних кусков;
  • Время плавки стали составляет от 50-70 минут, в зависимости от разогрева плавильного узла;
  • Плавильные печи для стали, имеют высокую производительность при производстве отливок небольшой массы и размера.

Медь, медные сплавы, бронза, латунь можно расплавить во всех плавильных печах, где поддерживается температурный режим 1000 - 1300 °С. Однако предпочтительнее использовать индукционные плавильные печи, так как одна плавка в них не будет превышать 40 минут. Медь, которую сегодня используют в России, не отличается особой чистотой. Обычно она содержит следующие примеси: железо, никель, сурьма, мышьяк. Чистым металлом считается медь с содержанием примесей 1%.

Основное важное качество металла - это высокие показатели электропроводности и теплопроводности. Этим обуславливается невысокая температура для плавки. Температура плавки меди - 1084°С. Медь является достаточно гибким металлом, который широко используют в различных технических отраслях промышленности, вот некоторые ее особенности:

  • Плавить медь можно в открытой среде, в вакууме и в среде защитных газов;
  • В вакууме плавят медь для получения бескислородной меди, с возможностью понизить O (Oxygenium) кислород практический до нуля 0,001 %;
  • Основная шихта при получении бескислородной меди это катодные листы 99,95 %, перед тем как загрузить листы в печь необходимо их разрезать, промыть и просушить от электролита;
  • Футеровка плавильной печи выше уровня металла делают из магнезита;
  • Чтобы избежать окисления, плавка ведется с применением древесного угля, флюсов, стекла и других компонентов.

Индукционная печь для плавки металла

Индукционная печь для плавки металла нагревает шихту металла токами высокой частоты (ТВЧ) в индуцируемом электромагнитном поле под воздействием вихревых электрических токов. Плавильные печи тратят большое количество электроэнергии, поэтому мы предлагаем печи не только с тиристорным преобразователем , но и экономичным транзисторным . Печь использует футеровку или графитовый тигель, в обоих случаях их хватает только на 20-40 плавок. Высокая температура плавления, позволяет производить одну плавку металла за 50 минут.

ZAVODRR - печи для плавки металлов от российских, азиатских и европейских производителей с емкостью тигля от 1 до 10 000 кг. Поставка, монтаж, запуск и не дорогое обслуживание печей.

Давайте рассмотрим особенности печей для плавки черных, цветных и драгоценных металлов:

  • Печь для плавки алюминия (плавка алюминия в печах производится при температуре 660 °C, температура кипения 2400 °C, плотность 2698 кг/см³);
  • Печь для плавки чугуна (плавка чугуна 1450 - 1520 °C, плотность 7900 кг/м³);
  • Печь для плавки меди (плавка меди 1083°C, температура кипения 2580°C, плотность 8920 кг/см³);
  • Печь для плавки золота (плавка золота 1063°C, температура кипения 2660°C, плотность 19320 кг/см³);
  • Печи плавки серебра (плавка серебра 960°C, температура кипения 2180°C, плотность 10500 кг/см³);
  • Печь для плавки стали (плавка стали в печах 1450 - 1520 °C, плотность 7900 кг/м³);
  • Печь плавки железа (плавка железа 1539°C, температура кипения 2900°C, плотность 7850 кг/м3);
  • Печи для плавки титановых сплавов (плавка титана 1680°C, температура кипения 3300°C, плотность 4505 кг/м³);
  • Печь для плавки свинца (плавка свинца в печах 327°C, температура кипения 1750°C, плотность 1134 кг/см³);
  • Печь плавки латуни (плавка латуни в печах 880—950 °C. плотность 8500 кг/м³);
  • Печи плавки бронзы (плавка бронзы в печах, 930—1140 °C 8700 кг/м³).

Разработанные более века назад, индукционные печи прочно входят в наш быт. Это стало возможно благодаря развитию электроники. Взрывной рост мощности контроллеров, выполненных на основе кремниевых полупроводников и появление в широкой продаже транзисторов, способных обеспечивать большие мощности (в несколько киловатт) в последние годы приобрёл характер лавины. Всё это подарило человечеству невероятно большие перспективы в развитии миниатюрных установок, сопоставимых по мощности с промышленными устройствами ближайшего прошлого.

Использование и строение устройства

Применение индукционных печей в домашнем хозяйстве позволяет избежать появления в помещении очагов открытого пламени и является довольно эффективным способом плавления и контролированного нагрева металлов и сплавов. Это происходит благодаря тому, что металл нагревается, раскаляется и расплавляется не под воздействием высокотемпературных горелок, а с помощью пропускания через себя токов большой частоты, стимулирующих активное движение частиц в структуре материала.

Стало возможным появление в быту:

Кроме того, всё большее распространение получают электроиндукционные печки, которые работают не только с токопроводящим материалом. Их устройство немного отличается от обычных индукционных печей, так как в его основе лежит нагрев электрической индукцией материала, который не проводит ток (их ещё называют диэлектриками) между обкладками конденсатора , то есть, его выводами разной полярности. Достигаемые температуры при этом не очень большие (порядка 80−150 градусов Цельсия), поэтому такие установки применяются для плавления пластика или его термической обработки.

Особенности конструкции и принцип работы

Индукционная печь работает на основе образования в ней вихревых электрических токов. Для этого используют состоящую из витков толстого провода катушку индуктивности, к которой подводится источник переменного тока. Именно переменный ток образует постоянно меняющееся в зависимости от текущей частоты магнитное поле. Оно и провоцирует передачу этих токов помещаемому внутрь катушки веществу вместе с большим количеством тепла. Генератором при этом может выступать даже самый обычный сварочный инвертор.

Разделяют два вида индукционных печей:

  1. С магнитопроводом, особенностью которой является расположение индуктора внутри объёма металла, поддающегося плавке.
  2. Без магнитопровода - когда индуктор находится снаружи.

Конструкция с наличием магнитопровода используется, например, в канальных печах. В них используется неразомкнутый металлический (чаще всего - стальной) магнитопровод, внутри которого находятся тигель для плавки и индуктор, образовывающие первичную цепь обмотки. В качестве материала для тигля можно использовать графит, жаропрочную глину или любой другой непроводящий ток материал, обладающий подходящей термостойкостью. В нём размещают металл, который требуется расплавить. Это, как правило, всяческие сплавы цветных металлов, дюралюминий и чугун.

Генератор такой печи должен обеспечивать частоту переменного тока в пределах 400 герц. Возможны и варианты использования вместо генератора обычную электрическую сеть и питать печь с помощью тока с частотой в 50 герц, но в этом случае температура разогрева будет ниже и для более тугоплавких сплавов такая установка не подойдёт.

Тигельные же печи, не имеющие в своей конструкции магнитопровода, получили значительно большее распространение среди энтузиастов. Они используют токи значительно большей частоты для достижения большей плотности поля. Это связано как раз с отсутствием магнитопровода - слишком большой процент энергии поля рассеивается в пространстве. Для противодействия этому необходимо очень тонко настроить печь:

  • Обеспечить равную частоту контура индукционной установки и напряжения от генератора (при использовании инвертора это сделать легче всего).
  • Подобрать диаметр плавильного тигля таким образом, чтобы он был близок с длиной волны полученного излучения магнитного поля.

Таким образом можно минимизировать потери вплоть до 25% от всей мощности. Для достижения же наилучшего результата рекомендуется выставлять дважды, а то и трижды большую частоту источника переменного тока, чем резонансную. В этом случае диффузия металлов, входящих в состав сплава будет максимальной, а его качество - значительно лучше. Если повышать частоту и дальше, можно добиться эффекта выталкивания высокочастотного поля к поверхности изделия и так провести его закалку.

Вакуумные плавильные печи

Такой вид установок сложно назвать бытовыми, но рассмотреть их стоит из-за того, что вакуумная плавка имеет ряд технологических преимуществ по сравнению с другими видами. По своей конструкции она напоминает тигельную, с тем отличием, что сама печь находится в вакуумной камере. Это позволяет добиваться большей чистоты процесса расплавления металла, понизить его окисляемость в процессе обработки и ускорить процесс, добиваясь значительной экономии электроэнергии.

Кроме того, ограниченность и замкнутость пространства способствует избежать выделения в окружающее пространство вредных испарений плавящихся металлов и сохранять чистоту процесса их обработки. Возможность контролировать состав и процесс обработки также является одним из преимуществ печей этого вида.

Канальные индукционные установки

Ещё один вид промышленных печей, имеющих более широкое применение, чем другие. Их можно использовать не только в качестве плавилен, но и как раздатчики подготовленного материала и смесители нескольких видов сырья. Типовые конструкции таких устройств включают:

Малейшее размыкание контура, который образуется жидким металлом, магнитопроводом и катушкой приводит к повышению его собственного сопротивления и мгновенному выбросу всей массы сырья из канала. Для противодействия такому явлению внутри канала оставляют «болото» - небольшую массу металла, которая поддерживается в жидком виде.

Преимущества индуктивных печей канального типа:

  • Невысокая цена установок.
  • Экономичность - для поддержания температуры внутри ванны, которая плохо рассеивает тепло, нужно малое количество электроэнергии.
  • Коэффициент полезного действия индуктора при работе очень высок.

Недостатки:

Основные элементы схемы печи

Для того чтобы собрать установку и выполнять работы на ней, необходимо найти подходящую схему индукционной печи и детали для неё. Для поиска последних очень пригодится наличие одного или нескольких ненужных блоков питания от компьютера, так как большинство деталей можно найти в них. Типовая схема простейшей печи с самодельным инвертором будет включать такие элементы, как:

Инвертор для установки собирается по схеме, предложенной С. В. Кухтецким для лабораторных испытаний. Её легко можно найти в интернете. Мощность инвертора, который питается от напряжения в диапазоне 12−35 вольт будет составлять 6 киловатт, а его рабочая частота - 40−80 килогерц, этого будет более чем достаточно для домашних проектов.

Техника безопасности при работе

Так как работа с индукционной печью подразумевает тесный контакт с расплавленным металлом и токами высокой частоты и силы, стоит озаботиться о качественном заземлении установки и надёжных средствах защиты. При этом одежда должна строго соответствовать всем требованиям:

Не стоит забывать и о хорошей вентилируемости помещения, в котором будут работать. Расплавленный металл выбрасывает в воздух химические соединения, которые совсем неполезны для ваших лёгких.

В статье рассмотрены схемы промышленных индукционных плавильных печей (канальных и тигельных) и индукционных закалочных установок с питанием от машинных и статических преобразователей частоты.

Схема индукционной канальной печи

Почти все конструкции промышленных индукционных канальных печей выполняются с отъемными индукционными единицами. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Индукционная единица состоит из следующих элементов, кожуха, магнитопровода, футеровки, индуктора.

Индукционные единицы выполняются как однофазными, так и двухфазными (сдвоенными) с одним или двумя каналами на один индуктор. Индукционная единица подключается ко вторичной стороне (стороне НН) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

На рис. 1 приведена схема питания однофазной индукционной единицы канальной печи. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25-30% мощности основного трансформатора.

Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи. У печей и миксеров непрерывного действия при сливе металла и загрузке новых порций шихты отключение индукционных единиц не производится.


Рис. 1. Принципиальная схема питания индукционной единицы канальной печи: ВМ - выключатель мощности, КЛ - контактор, Тр - трансформатор, С - конденсаторная батарея, И - индуктор, ТН1, ТН2 - трансформаторы напряжения, 777, ТТ2 - трансформаторы тока, Р - разъединитель, ПР - предохранители, РМ1, РМ2 - реле максимального тока.

Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд.

Схема индукционной тигельной печи

Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше 1000 кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника (см. АРИС на рис. 2). Силовые трансформаторы мощностью 1000, 2500 и 6300 кВ-А имеют 9 - 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400 - 2500 кВ-А, при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

На рис. 2 приведена схема питания индукционной печи промышленной частоты. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.


Рис. 2. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН - переключатель ступеней напряжения, С - симметрирующая емкость, L - реактор симметрирующего устройства, С-Ст - компенсирующая конденсаторная батарея, И - индуктор печи, АРИС - регулятор симметрирующего устройства, АРИР - регулятор режима, 1K-NK - контакторы управления емкостью батареи, ТТ1, ТТ2 - трансформаторы тока.

На рис. 3 приведена принципиальная схема питания индукционных тигельных печей от машинного преобразователя средней частоты. Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля (для высокотемпературных печей), а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки.


Рис. 3. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М - приводной двигатель, Г -генератор средней частоты, 1K-NK - магнитные пускатели, ТИ - трансформатор напряжения, ТТ - трансформатор тока, ИП - индукционная печь, С - конденсаторы, ДФ - датчик фазы, ПУ - переключающее устройство, УФР - усилитель-фазорегулятор, 1КЛ, 2КЛ - линейные контакторы, БС - блок сравнения, БЗ - блок защиты, ОВ - обмотка возбуждения, РН - регулятор напряжения.

Схема индукционной закалочной установки

На рис. 4 приведена принципиальная электрическая схема питания индукционного закалочного станка от машинного преобразователя частоты. Помимо источника питания М-Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы (вольтметр V, ваттметр W, фазометр) и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок.

Рис. 4. Принципиальная электрическая схема индукционной закалочной установки: М -приводной двигатель, Г - генератор, ТН, ТТ - трансформаторы напряжения и тока, К - контактор, 1PM, 2РМ, ЗРМ - реле тока, Рк - разрядник, А, V, W - измерительные приборы, ТрЗ - закалочный трансформатор, OВГ -обмотка возбуждения генератора, РР - разрядный резистор, РВ - контакты реле возбуждения, PC - регулируемое сопротивление.

Для питания старых индукционных установок для термообработки деталей используют электромашинные преобразователи частоты - приводной двигатель синхронного или асинхронного типа и генератор средней частоты индукторного типа, в новых индукционных установках - статические преобразователи частоты.

Схема промышленного тиристорного преобразователя частоты для питания индукционной закалочной установки показана на рис. 5. Схема тиристорного преобразователя частоты состоит из выпрямителя, блока дросселей, преобразователя (инвертора), цепей контроля и вспомогательных узлов (реакторов, теплообменников и пр.). По способу возбуждения инверторы выполняются с независимым возбуждением (от задающего генератора) и с самовозбуждением.

Тиристорные преобразователи могут устойчиво работать как с изменением частоты в широком диапазоне (при самонастраивающемся колебательном контуре в соответствии с изменяющимися параметрами нагрузки), так и при неизменной частоте с широким диапазоном изменения параметров нагрузки в связи с изменением активного сопротивления нагреваемого металла и его магнитных свойств (для ферромагнитных деталей).


Рис. 5. Принципиальная схема силовых цепей тиристорного преобразователя типа ТПЧ-800-1: L - сглаживающий реактор, БП - блок пуска, ВА - выключатель автоматический.

Преимуществами тиристорных преобразователей являются отсутствие вращающихся масс, малые нагрузки на фундамент и малое влияние коэффициента использования мощности на снижение КПД, КПД составляет 92 - 94% при полной нагрузке, а при 0,25 снижается только на 1 - 2%. Кроме того, поскольку частота может быть легко изменена в определенном диапазоне, нет необходимости регулирования емкости для компенсации реактивной мощности колебательного контура.

На сегодняшний день современное производство металлических изделий требует повышенного качества изготавливаемых материалов без существенного повышения цены продукта. Мы предлагаем Вам купить промышленные индукционные тигельные плавильные печи для плавки металла по ценам от производителя, при помощи которых можно достичь таких требований.

В отличии от пламенных и дуговых индукционные плавильные установки сохраняют точность и однородность химического состава и имеют меньшую стоимость.

Компания Проминдуктор занимается производством и продажей промышленных индукционных тигельных плавильных печей, которые подходят для плавки любых видов металла: чугуна, стали, алюминия, меди, золота, платины и их сплавов.

При покупке у нас Вы получаете ряд преимуществ:

  • Высокое качество - используем последние мировые разработки совместно с собственными;
  • Цены от производителя - стоимость значительно ниже, чем у других компаний в России;
  • Экономичность оборудования – экономия электричества до 30%;
  • Техническая поддержка 24/7 – если Вы приобрели оборудование у нас, то сможете получить помощь наших специалистов в любое время дня и ночи.
  • Наше производство и лучшие инженеры находятся в Китае, оборудование всегда есть в наличии на складе, бесплатная доставка по России, возможна доставка в страны СНГ. Позвоните нам и мы дадим профессиональные консультации в подборе.

    Принцип работы индукционных печей для плавки металла

    По принципу работы все индукционные плавильные установки напоминают трансформатор, в котором есть первичная и вторичная обмотка. Индуктор из медной трубы выполняет роль первичной обмотки, который имеет свое собственное водяное охлаждение. Роль вторичной обмотки выполняет металл (сталь, чугун, медь, алюминий) во время нагрева, заложенный в тигель. Под действием токов высокой частоты катушка образует электромагнитное поле в тигле, под воздействием которого происходит нагрев металла до максимальных температур за короткий период времени.

    Промышленные индукционные тигельные печи нашего производства имеют возможность задать необходимую мощность нагрева для плавки металла в зависимости от его типа. Эта функция является неоспоримым преимуществом данного оборудования.

    Устройство индукционной плавильной печи

    Условно индукционные тигельные печи можно разделить на 2 составляющие:

  • Плавильная установка
  • Вспомогательное оборудование

  • Плавильная установка представляет собой опорный каркас из двух сваренных стоек с гидравлическими плунжерами и узловую составляющую индуктора. Установочный механизм выполнен из прокатных листов нержавейки. Катушка индуктора изготовлена из медной трубы, через которую также происходит охлаждение посредством холодной воды. Электричество и вода подключены к катушке при помощи гибких кабелей, которые соединены последовательно. При помощи гидравлических плунжеров обеспечивается наклон установки до 95°.

    Все оборудование индукционной печи для плавки металла питается от частотного преобразователя тиристорного типа, который преобразовывает трехфазный ток в однофазный. Фронтовая панель имеет датчики защиты и оборудование, контролирующее работу преобразователя.

    Регулировка частоты происходит в автоматическом режиме по заданной программе. На воронке слива установлены системы оповещения и контроля охлаждения процессов, а также уровня конденсации рабочей зоны.

    Промышленные индукционные тигельные плавильные печи для плавки металла от компании ПРОМИНДУКТОР изготовлены по всем мировым стандартам и с использованием самых последних технологий.

    Индукционная плавка - широко распространенный в черной и цвет­ной металлургии процесс. Плавка в устройствах с индукционным нагревом нередко превосходит плавку в топливных печах по эффективности исполь­зования энергии, качеству продукта и гибкости производства. Эти пре-

    современных электротехнологий

    имущества обусловлены специфическими физическими характеристиками индукционных печей.

    При индукционной плавке происходит перевод твердого материала в жидкую фазу под воздействием электромагнитного поля. Так же как в слу­чае индукционного нагрева, тепло выделяется в расплавляемом материале вследствие эффекта Джоуля от наведенных вихревых токов. Первичный ток, проходящий через индуктор, создает электромагнитное поле. Вне за­висимости от того, концентрируется электромагнитное поле магнитопро - водами или нет, связанная система индуктор - загрузка может быть пред­ставлена как трансформатор с магнитопроводом или как воздушный трансформатор. Электрический КПД системы сильно зависит от влияющих на поле характеристик ферромагнитных конструктивных элементов.

    Наряду с электромагнитными и тепловыми явлениями в процессе индукционной плавки важную роль играют электродинамические силы. Эти силы должны учитываться, особенно в случае плавки в мощных ин­дукционных печах. Взаимодействие индуктированных электрических то­ков в расплаве с результирующим магнитным полем вызывает механиче­скую силу (силу Лоренца)

    Давление Потоки расплава

    Рис. 7.21. Действие электромагнитных сил

    Например, вызванное силами турбулентное движение расплава име­ет очень большое значение как для хорошего теплообмена, так и для пере­мешивания и адгезии непроводящих частиц, находящихся в расплаве.

    Различают два основных типа индукционных печей: индукционные тигельные печи (ИТП) и индукционные канальные печи (ИКП). В ИТП расплавляемый материал обычно загружается кусками в тигель (рис. 7.22). Индуктор охватывает тигель и расплавляемый материал. Из-за отсутствия концентрирующего поля магнитопровода электромагнитная связь между

    современных электротехнологий

    индуктором и загрузкой сильно зависит от толщины стенки керамического тигля. Для обеспечения высокого электрического КПД изоляция должна быть как можно тоньше. С другой стороны, футеровка должна быть доста­точно толстой для того, чтобы противостоять термическим напряжениям и

    движению металла. Следовательно, следует искать компромисс между электрическими и прочностными критериями.

    Важными характеристиками индукционной плавки в ИТП являются движение расплава и мениск как результат воздействия электромагнитных сил. Движение расплава обеспечивает как равномерное распределение температуры, так и однородный химический состав. Эффект перемешива­ния у поверхности расплава снижает потери материала во время дозагруз - ки малоразмерной шихты и добавок. Несмотря на использование дешевого материала воспроизводство расплава постоянного состава обеспечивает высокое качество литья.

    В зависимости от размеров, рода расплавляемого материала и облас­ти применения ИТП работают на промышленной частоте (50 Гц) или сред-

    современных электротехнологий

    них частотах до 1000 Гц. Последние приобретают все более важное значе­ние благодаря высокой эффективности при плавке чугуна и алюминия. По­скольку движение расплава при постоянной мощности ослабляется с по­вышением частоты, на более высоких частотах становятся доступными бо­лее высокие удельные мощности и, как следствие, большая производи­тельность. Вследствие более высокой мощности сокращается время плав­ки, что ведет к повышению КПД процесса (по сравнению с печами, рабо­тающими на промышленной частоте). С учетом других технологических преимуществ, таких как гибкость при смене выплавляемых материалов, среднечастотные ИТП разработаны как мощные плавильные установки, доминирующие в настоящее время в чугунолитейном производстве. Со­временные мощные среднечастотные ИТП для плавки чугуна имеют ем­кость до 12 т и мощность до 10 МВт. ИТП промышленной частоты разра­батываются для больших емкостей, чем среднечастотные, до 150 т для плавки чугуна. Интенсивное перемешивание ванны имеет особое значение при выплавке однородных сплавов, например латуни, поэтому в этой об­ласти широко используются ИТП промышленной частоты. Наряду с при­менением тигельных печей для плавки в настоящее время их используют также для выдержки жидкого металла перед разливкой.

    В соответствии с энергетическим балансом ИТП (рис. 7.23) уровень электрического КПД почти для всех типов печей составляет около 0,8. Приблизительно 20 % исходной энергии теряется в индукторе в виде Джо - улева тепла. Отношение тепловых потерь через стенки тигля к индуктиро­ванной в расплаве электрической энергии достигает 10 %, поэтому полный КПД печи составляет около 0,7.

    Вторым широко распространенным типом индукционных печей яв­ляются ИКП. Они применяются для литья, выдержки и, особенно, плавки в черной и цветной металлургии. ИКП в общем случае состоит из керамиче­ской ванны и одной или нескольких индукционных единиц (рис. 7.24). В

    принципе, индукционная единица может быть представлена как трансфор-

    Принцип действия ИКП требует наличия постоянно замкнутого вто­ричного витка, поэтому эти печи работают с жидким остатком расплава. Полезное тепло генерируется главным образом в канале, имеющем малое сечение. Циркуляция расплава под действием электромагнитных и терми­ческих сил обеспечивает достаточный перенос тепла в основную массу расплава, находящуюся в ванне. До настоящего времени ИКП проектиро­вались на промышленную частоту, однако исследовательские работы про­водятся и для более высоких частот. Благодаря компактной конструкции печи и очень хорошей электромагнитной связи ее электрический КПД дос­тигает 95%, а общий КПД - 80 % и даже 90 % в зависимости от расплав­ляемого материала.

    В соответствии с технологическими условиями в разных областях применения ИКП требуются различные конструкции индукционных кана­лов. Одноканальные печи используются в основном для выдержки и литья,

    современных электротехнологий

    реже плавки стали при установленных мощностях до 3 МВт. Для плавки и выдержки цветных металлов предпочтительнее двухканальные конструк­ции, обеспечивающие лучшее использование энергии. В установках для плавки алюминия каналы выполняются прямыми для удобства очистки.

    Производство алюминия, меди, латуни и их сплавов является основ­ной областью применения ИКП. Сегодня наиболее мощные ИКП емкостью

    до 70 т и мощностью до 3 МВт используются для плавки алюминия. Наря­ду с высоким электрическим КПД в производстве алюминия очень важны низкие потери расплава, что и предопределяет выбор ИКП.

    Перспективными применениями технологии индукционной плавки являются производство высокочистых металлов, таких как титан и его сплавы, в индукционных печах с холодным тиглем и плавка керамики, на­пример силиката циркония и оксида циркония.

    При плавке в индукционных печах ярко проявляются преимущества индукционного нагрева, такие как высокая плотность энергии и произво­дительность, гомогенизация расплава благодаря перемешиванию, точный

    современных электротехнологий

    энергетический и температурный контроль, а также простота автоматиче­ского управления процессом, легкость ручного управления и большая гиб­кость. Высокие электрический и тепловой КПД в сочетании с низкими по­терями расплава и, следовательно, экономией сырья обусловливают низ­кий удельный расход энергии и экологическую конкурентоспособность.

    Превосходство индукционных плавильных устройств над топливны­ми непрерывно возрастает благодаря практическим исследованиям, под­крепленным численными методами решения электромагнитной и гидроди­намической задач. В качестве примера можно отметить внутреннее покры­тие медными полосами стального кожуха ИКП для плавки меди. Умень­шение потерь от вихревых токов повысило КПД печи на 8 %, и он достиг 92 %.

    Дальнейшее улучшение экономических показателей индукционной плавки возможно за счет применения современных технологий управле­ния, таких как тандем или управление двойным питанием. Две ИТП тан­дема имеют один источник питания, и пока в одной идет плавка, в другой расплавленный металл выдерживается для разливки. Переключение источ­ника питания с одной печи на другую повышает коэффициент его исполь­зования. Дальнейшим развитием этого принципа является управление двойным питанием (рис. 7.25), которое обеспечивает продолжительную одновременную работу печей без переключения с помощью специальной автоматики управления процессом. Следует также отметить, что неотъем­лемой частью экономики плавки является компенсация общей реактивной мощности.

    В заключение для демонстрации преимуществ энерго - и материалос­берегающей индукционной технологии можно сравнить топливный и элек­тротермический способы плавки алюминия. Рис. 7.26 показывает значи­тельное снижение энергопотребления на тонну алюминия при плавке в

    Глава 7. Энергосберегающие возможности современных электротехнологий

    □ потери металла; Щ плавление

    современных электротехнологий

    индукционной канальной печи емкостью 50 т. Потребляемая конечная энергия уменьшается примерно на 60 %, а первичная на 20 %. Наряду с этим значительно сокращается выброс СО2. (Все расчеты основываются на типичных для Германии коэффициентах преобразования энергии и выде­ления СО2 при работе смешанных электростанций). Полученные результа­ты подчеркивают особое влияние потерь металла при плавке, связанных с его окислением. Их компенсация требует большого дополнительного рас­хода энергии. Примечательно, что в производстве меди потери металла при плавке также велики и должны учитываться при выборе той или иной технологии плавки.