Солнечная система теплоснабжения. Современные системы солнечного теплоснабжения Сравнение характеристик солнечных коллекторов

Доктор технических наук Б.И.Казанджан
Московский Энергетический Институт
(технический университет), Россия
Журнал Энергия, №12, 2005.

1. Введение.

Основными причинами, побудившими человечество заняться широкомасштабным промышленным освоением возобновляемых источников энергии являются:
-климатические изменения обусловленные увеличением содержания СО2 в атмосфере;
-сильная зависимость многих развитых стран, особенно европейских, от импорта топлива;
-ограниченность запасов органического топлива на Земле.
Недавнее подписание Киотского протокола большинством развитых стран мира поставило на повестку дня ускоренное развитие технологий способствующих сокращению выбросов СО2 в окружающую среду. Стимулом для развития этих технологий является не только осознание угрозы изменения климата и связанных с этим экономических потерь, но и тот факт, что квоты на выброс парниковых газов стали товаром, имеющим вполне реальную стоимость. Одной из технологий, позволяющей снизить расход органического топлива и уменьшить выбросы СО2, является производство низкопотенциального тепла для систем горячего водоснабжения, отопления, кондиционирования воздуха, технологических и иных нужд за счет солнечной энергии. В настоящее время более 40% первичной энергии расходуемой человечеством приходится на покрытие именно этих потребностей, и именно в этом секторе технологии использования солнечной энергии являются наиболее зрелыми и экономически приемлемыми для широкого практического использования. Для многих стран использование солнечных систем теплоснабжения - это еще и способ уменьшить зависимость экономики от импорта ископаемых топлив. Эта задача особенно актуальна для стран Европейского Союза, экономика которого уже сейчас на 50% зависит от импорта ископаемых энергоресурсов, а до 2020 года эта зависимость может возрасти до 70%, что является угрозой экономической независимости этого региона

2.Масштабы использования солнечных систем теплоснабжения

О масштабах современного использования солнечной энергии для нужд теплоснабжения свидетельствуют следующие статистические данные .
Общая площадь солнечных коллекторов установленных в странах ЕС к концу 2004 года достигла 13960000 м2, а в мире превысила 150000000 м2. Ежегодный прирост площади солнечных коллекторов в Европе в среднем составляет 12% , а в отдельных странах достигает уровня 20-30% и более. По количеству коллекторов на тысячу жителей населения мировым лидером является Кипр, где 90% домов оборудованы солнечными установками (на тысячу жителей здесь приходится 615,7 м2 солнечных коллекторов), за ним следуют Израиль, Греция и Австрия. Абсолютным лидером по площади установленных коллекторов в Европе является Германия - 47%, далее следуют Греция - 14%, Австрия - 12%, Испания - 6%, Италия - 4%, Франция - 3%. Европейские страны являются бесспорными лидерами в разработке новых технологий систем солнечного теплоснабжения, однако сильно уступают Китаю в объемах ввода в эксплуатацию новых солнечных установок. Статистические данные по увеличению количества вводимых в эксплуатацию солнечных коллекторов в мире по итогам 2004 года дают следующее распределение: Китай - 78%, Европа - 9%, Турция и Израиль - 8%, остальные страны - 5%.
По экспертной оценке ESTIF (Европейская Федерация промышленности солнечных тепловых установок) технико-экономический потенциал по использованию солнечных коллекторов в системах теплоснабжения только в странах ЕС составляет более 1,4 млрд.м2 способных производить более 680 000 ГВтч тепловой энергии в год. Планы на ближайшую перспективу предусматривают установку в этом регионе 100 000000 м2 коллекторов к 2010 году.

3. Солнечный коллектор - ключевой элемент солнечной системы теплоснабжения

Солнечный коллектор является основным компонентом любой солнечной системы теплоснабжения. Именно в нем происходит преобразование солнечной энергии в тепло. От его технического совершенства и стоимости зависит эффективность работы всей системы солнечного теплоснабжения и ее экономические показатели.
В системах теплоснабжения используются в основном два типа солнечных коллекторов: плоский и вакуумный.

Плоский солнечный коллектор состоит из корпуса, прозрачного ограждения, абсорбера и тепловой изоляции (фиг.1).

Фиг. 1 Типичная конструкция плоского солнечного коллектора

Корпус является основной несущей конструкцией,.прозрачное ограждение пропускает солнечную радиацию внутрь коллектора, защищает абсорбер от воздейсквия внешней среды и уменьшает тепловые потери с лицевой стороны коллектора. Абсорбер поглощает солнечную радиацию и по трубкам соедененным с его теплоприемной поверхностью передает тепло теплоносителю. Тепловая изоляция уменьшает тепловые потери с тыльной и боковой поверхностей коллектора.
Теплоприемная поверхность абсорбера имеет селективное покрытие, имеющее высокий коэффициент поглощения в видимой и ближней инфракрасной области солнечного спектра и низкий коэффициент излучения в области спектра соответствующего рабочим температурам коллектора. У лучших современных коллекторов коэффициет поглощения находитвя в пределах 94-95%, коэффициет излучения 3-8%, а кпд в области рабочих температур типичных для систем теплоснабжения превышает 50% Неселективное черное покрытие абсорбера в современных коллекторах используется редко из-за высоких потерь на излучение. На рис 2 показаны примеры современных плоских коллекторов.

В вакуумных коллекторах (рис 3) каждый элемент абсорбера помещается в отдельную стеклянную трубу, внутри которой создается вакуум, благодаря чему потери тепла за счет конвекции и теплопроводности воздуха подавяются практически полностью. Селективное покрытие на поверхности абсорбера позволяет минимизировать потери на излучение. В результате к.п.д вакуумного коллектора получается существенно выше чем у плоского коллектора, на и стоимость его заначительно выше.

аб

Рис 2 Плоские солнечные коллектры

а) фирма Вагнер, б) фирма Ферон

а б

Рис 3 Вакуумный коллектор фирмы Виссман
а) общий вид, б) монтажная схема

3. Тепловые схемы солнечных систем теплоснабжения

В мировой практике наиболее широко распространены малые системы солнечного теплоснабжения. Как правило, такие системы включают в себя солнечные коллекторы общей площадью 2-8м2, бак аккумулятор, емкость которого определяется площадью используемых коллекторов, циркуляционный насос или насосы (в зависимости от типа тепловой схемы) и другое вспомогательное оборудование. В небольших системах, циркуляция теплоносителя между коллектором и баком-аккумулятором может осуществяться и без насоса, за счет естественной конвекции (термосифонный принцип). В этом случае бак-аккумулятор должен располагаться выше коллектора. Простейшим типом таких установок является коллектор, спаренный с баком аккумулятором, расположенным на верхнем торце коллектора (рис.4). Системы такого типа используются обычно для нужд горячего водоснабжения в небольших односемейных домах коттеджного типа.

Рис.4 Термосифонная солнечная система теплоснабжения.

На Рис. 5 показан пример активной системы большего размера, в которой бак аккумулятор расположен ниже коллекторов и циркуляция теплоносителя осуществляется с помощью насоса. Такие системы используются для нужд и горячего водоснабжения и отопления. Как правило, в активных системах, участвующих в покрытии части нагрузки отопления, предусматривается дублирующий источник тепла, использующий электроэнергию или газ.

Рис 5 Тепловая схема активной солнечной системы горячего водоснабжения и отопления

Сравнительно новым явлением в практике использования солнечного теплоснабжения являются крупные системы способные обеспечить нужды горячего водоснабжения и отопления многоквартирных домов или целых жилых кварталов. В таких системах используется либо суточное, либо сезонное аккумулирование тепла.
Суточное аккумулирование предполагает возможность работы системы с использованием накопленного тепла в течение нескольких суток, сезонное - в течение нескольких месяцев.
Для сезонного аккумулирования тепла используют большие подземные резервуары, наполненные водой, в которые сбрасываются все излишки тепла, получаемого от коллекторов в течение лета. Другим вариантом сезонного аккумулирования является прогрев грунта с помощью скважин с трубами, по которым циркулирует горячая вода, поступающая от коллекторов.

В таблице 1. приведены основные параметры крупных солнечных систем с суточным и сезонным аккумулированием тепла в сравнении с малой солнечной системой для односемейного дома.

Тип системы

Площадь коллекторов в расчете на одного человека м2/чел

Объем теплового аккумулятора, л/м2кол

Доля нагрузки горячего водоснабжения покрываемая за счет солнечной энергии %

Доля общей нагрузки, покрываемая за счет солнечной энергии

Стоимость тепла получаемого за счет солнечной энергии для условий Германии Евро/кВтч

1. Солнечные коллекторы.

Солнечный коллектор является основным элементом установки, в которой энергия излучения Солнца преобразуется в другую форму полезной энергии. В отличие от обычных теплообменников, в которых происходит интенсивная передача тепла от одной жидкости к другой, а излучение несущественно, в солнечном коллекторе перенос энергии к жидкости осуществляется от удаленного источника лучистой энергии. Без концентрации солнечных лучей плотность потока падающего излучения составляет в лучшем случае -1100 Вт/м 2 и является переменной величиной. Длины волн заключены в интервале 0,3 - 3,0 мкм. Они значительно меньше величин длин волн собственного излучения большинства поверхностей, поглощающих излучение. Таким образом, исследование солнечных коллекторов связано с уникальными проблемами теплообмена при низких и переменных плотностях потока энергии и относительно большой роли излучения.

Солнечные коллекторы могут применяться как с концентрацией, так и без концентрации солнечного излучения. В плоских коллекторах поверхность, воспринимающая солнечное излучение, является одновременно поверхностью, поглощающей излучение. Фокусирующие коллекторы, обычно имеющие вогнутые отражатели, концентрируют падающее на всю их поверхность излучение на теплообменник с меньшей площадью поверхности, увеличивая тем самым плотность потока энергии.

1.1. Плоские солнечные коллекторы. Плоский солнечный коллектор представляет собой теплообменник, предназначенный для нагрева жидкости или газа за счет энергии излучения Солнца.

Плоские коллекторы могут применяться для нагрева теплоносителя до умеренных температур, t ≈ 100 o C. К их преимуществам следует отнести возможность использования как прямой, так и рассеянной солнечной радиации; они не требуют слежения за солнцем и не нуждаются в повседневном обслуживании. В конструктивном отношении они проще, чем система, состоящая из концентрирующих отражателей, поглощающих поверхностей и механизмов слежения. Область применения солнечных коллекторов - системы отопления жилых и производственных зданий, системы кондиционирования, горячего водоснабжения, а также энергетические установки с низкокипящим рабочим телом, работающие обычно по циклу Ренкина.

Основными элементами типичного плоского солнечного коллектора (рис.1) являются: "черная" поверхность, которая поглощает солнечную радиацию и передает ее энергию теплоносителю (как правило жидкости); прозрачные относительно солнечного излучения покрытия, расположенные над поглощающей поверхностью, которые уменьшают конвективные и радиационные потери в атмосферу; теплоизоляция обратной и торцевой поверхностей коллектора для снижения потерь за счет теплопроводности.


Рис.1. Принципиальная схема плоского солнечного коллектора.

а) 1 - прозрачные покрытия; 2 - изоляция; 3 - труба с теплоносителем; 4 - поглощающая поверхность;

б) 1.поверхность, поглощающая солнечную радиацию, 2-каналы теплоносителя, 3-стекло(??), 4-корпус,

5- тепловая изоляция.

Рис.2 Солнечный коллектор типа лист - труба.

1 - верхний гидравлический коллектор; 2 - нижний гидравлический коллектор; 3 - п труб, расположенных на расстоянии W друг от дру­га; 4 - лист (поглощающая пластина); 5- соединение; 6 - труба (не в масштабе);

7 - изоляция.

1.2. Эффективность коллектора . Эффективность коллектора определяется его оптическим и тепловым КПД. Оптический КПД η о показывает, какая часть солнечной радиации, достигшая поверхности остекления коллектора, оказывается поглощенной абсорбирующей черной поверхностью, и учитывает потери энергии, связанные с отличием от единицы коэффициента пропускания стекла и коэффициента поглощения абсорбирующей поверхности. Для коллектора с однослойным остеклением

где (τα) n - произведение коэффициента пропускания стекла τ на коэффициент поглощения α абсорбирующий излучение поверхности при нормальном падении солнечных лучей.

В том случае, если угол падения лучей отличается от прямого, вводится поправочный коэффициент k, учитывающий увеличение потерь на отражение от стекла и поверхности, поглощающей солнечную радиацию. На рис. 3 приведены графики k = f(1/ cos 0 - 1) для коллекторов с однослойным и двухслойным остеклением. Оптический КПД с учетом угла падения лучей, отличного от прямого,

Рис. 3. Поправочный коэффициент, учитывающий отражение солнечных лучей от поверхности стекла и черной абсорбирующей поверхности.

Кроме этих потерь в коллекторе любой конструкции присутствуют потери теплоты в окружающую среду Q пот, которые учитываются тепловым КПД, который равен отношению количества полезной теплоты, отведенной от коллектора за определенное время, к количеству энергии излучения, поступающей к нему от Солнца за то же время:

где Ω площадь апертуры коллектора; І - плотность потока солнечной радиации.

Оптический и тепловой КПД коллектора связаны отношением

Тепловые потери характеризуются полным коэффициентом потерь U

где Т а - температура черной поверхности, абсорбирующей солнечную радиацию; Т о -температура окружающей среды.

Величина U с достаточной для расчетов точностью может считаться постоянной. В этом случае подстановка Q пот в формулу для теплового кпд приводит к уравнению

Тепловой КПД коллектора может быть записан также через среднюю температуру протекающего через него теплоносителя:

где T t = (Т вх + Т вых) /2 - средняя температура теплоносителя; F" - параметр, обычно называемый «эффективностью коллектора» и характеризующий эффективность переноса теплоты от поверхности, поглощающей солнечную радиацию, к теплоносителю; он зависит от конструкции коллектора и почти не зависит от других факторов; типичные значения параметра F"≈: 0,8-0,9 - для плоских воздушных коллекторов; 0,9-0,95 - для плоских жидкостных коллекторов; 0,95-1,0 - для вакуумных коллекторов.

1.3. Вакуумные коллекторы. В том случае, когда необходим нагрев до более высоких температур, используют вакуумные коллекторы. В вакуумном коллекторе объем, в котором находится черная поверхность, поглощающая солнечную радиацию, отделен от окружающей среды вакуумированным пространством, что позволяет значительно уменьшить поте­ри теплоты в окружающую среду за счет теплопроводности и конвекции. Потери на излучение в значительной степени подавляются путем применения селективного покрытия. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до более высоких температур (120-150 °С), чем в плоском коллекторе. На рис. 9.10 показаны примеры конструктивного выполнения вакуумных коллекторов.

Рис. 4. Типы вакуумных коллекторов.

1 - трубка с теплоносителем; 2 - пластина с селективным покрытием, поглощающая солнечное излучение; 3 тепловая труба; 4 теплосъемный элемент; 5 стеклянная трубка с селективным покрытием; б - внутренняя трубка для подачи теплоносителя; 7 наружный стеклянный баллон; 8 вакуум

Главным критерием уюта в частном коттедже или квартире является тепло. В холодном доме даже самая шикарная обстановка не поможет создать комфортных условий. Но чтобы оптимальная для проживания температура поддерживалась в помещении не только летом, но и зимой понадобится монтаж системы отопления.

Сделать это сегодня можно легко, приобретя в качестве источника тепла газовый, дизельный или электрический котел. Но проблема заключается в том, что топливо для такого оборудования стоит дорого и доступно не во всех населенных пунктах. Что же тогда выбрать? Лучшим решением являются альтернативные источники тепла и в частности солнечное отопление.

Устройство и принцип работы

Что же представляет собой такая система? В первую очередь следует сказать, что есть два варианта солнечного отопления. Они предполагают использование различных как в конструктивном плане, так и по назначению элементов:

  • Коллектора;
  • Фотоэлектрической панели.

И если оборудование первого типа предназначено сугубо для поддержания в помещении комфортной температуры, то солнечные панели для отопления дома могут применяться для получения электричества и тепла. Их принцип работы основан на преобразовании энергии солнца и накапливании ее в аккумуляторах, чтобы потом использовать для различных нужд.

Смотрим видео, все о данном коллекторе:

Применение коллектора позволяет организовать только солнечное системы отопление для частного дома, при этом используется тепловая энергия. Такое устройство действует следующим образом. Солнечные лучи подогревают воду, которая является теплоносителем и поступает с трубопровод. Эта же система может использоваться и в качестве горячего водоснабжения. В состав входят специальные фотоэлементы.

Устройство коллектора

Но кроме них в комплектацию солнечного отопления включены:

  • Специальный бак;
  • Аванкамеры;
  • Радиатор, выполненный из трубок и заключенный в короб, у которого передняя стенка выполнена из стекла.

Солнечные батареи для отопления дома размещаются на крыше. В нем вода нагреваясь перемещается в аванкамеру где происходит ее замена горячим теплоносителем. Это позволяет поддерживать в системе постоянное динамическое давление.

Виды отопления с использованием альтернативных источников

Самый простой способ преобразования энергии светила в тепло – это использование солнечных батарей для отопления дома. Они все чаще используются в качестве дополнительных источников энергии. Но что же представляют собой эти устройства и действительно ли они эффективны?

Смотрим видео, виды и их особенности работы:

Задача, установленного на крыше коллектора солнечного системы отопления для дома впитать как можно больше солнечного излучения, преобразовав его затем в так необходимую человеку энергию. Но при этом следует учитывать, что оно может быть превращено как в тепловую, так и электрическую энергию. Для получения тепла и подогрева воды используют солнечные системы отопления. Для получения электрического тока используют специальные батареи. Они аккумулируют энергию в дневное время суток и отдают ее ночью. Однако сегодня существуют и комбинированные системы. В них солнечные панели вырабатывают одновременно тепло и электричество.

Что касается солнечных водонагревателей для отопления дома, то они представлены на рынке широкой линейкой. Причем модели могут иметь различное назначение, дизайн, принцип работы, габариты.

Различные варианты

Например, по внешнему виду и конструкции системы отопления частного дома подразделяются на:

  1. Плоские;
  2. Трубчатые вакуумные.

По назначению они классифицируются на используемые для:

  • Системы отопления и ГВС;
  • Для нагрева воды в бассейне.

Есть отличия и принципе работы. Солнечное отопление с применением коллекторов является идеальным выбором для дачных домиков, так как не требуют подключения к электросети. Модели с принудительной циркуляцией подключают к общей системе отопления, в них циркуляция теплоносителя осуществляется при помощи насоса.

Смотрим видео, сравниваем плоский и трубчатый коллектор:

Не все коллекторы пригодны для солнечного отопления загородного дома. Согласно этому критерию они делятся на:

  • Сезонные;
  • Круглогодичные.

Первые применяются для отопления дачных строений, вторые в частных домовладениях.

Сравниваем с обычными система отопления

Если сравнивать это оборудование с газовым или электрическим, то оно имеет гораздо больше преимуществ. В первую очередь это экономия топлива. Летом солнечное отопление способно полностью обеспечить проживающих в доме людей горячей водой. Осенью и весной, когда ясных дней мало, оборудование можно использовать для снижения нагрузки на стандартный котел. Что касается зимней поры, то обычно в это время эффективность работы коллекторов очень мала.

Смотрим видео, эффективность коллекторов зимой:

Но кроме экономии топлива использование оборудования, работающего на солнечных батареях, снижает зависимость от газа и электричества. Для установки солнечного отопления не нужно получать разрешение и установить его сможет каждый, кто имеет элементарные знания в сантехнике.

Смотрим видео, критерии подбора оборудования:

Еще один плюс – это большая продолжительность работы коллектора. Гарантированный срок службы оборудования составляет не менее 15 лет, значит на этот период ваши коммунальные платежи будут минимальными.

Однако, как и у любого устройства у коллектора имеются некоторые недостатки:

  • На солнечные водонагреватели для частного дома цена достаточно высокая;
  • Невозможность использования как единственного источника тепла;
  • Необходима установка бака-накопителя.

Есть и еще один нюанс. Эффективность работы солнечного отопления зависит от региона. В южных районах, где активность солнца высока оборудование будет иметь самый большой КПД. Поэтому наиболее выгодно использовать такое оборудование на юге и менее эффективным оно будет на севере.

Выбор солнечного коллектора и его монтаж

Прежде, чем приступать к установке оборудования, входящего в отопительную систему необходимо изучить его возможности. Для того чтобы узнать сколько тепла потребуется на обогрев дома необходимо рассчитать его площадь. Важно правильно выбрать место для установки солнечного коллектора. Оно должно быть максимально освещенным на протяжении дня. Поэтому обычно оборудование устанавливаются на южной части крыши.

Выполнение монтажных работ лучше доверить специалистам, потому что даже небольшая ошибка в установке системы солнечного отопления приведет к значительному снижению эффективности системы. Только при правильной установке солнечного коллектора он прослужит до 25 лет, причем полностью окупив себя за первые 3 года.

Основные типы коллекторов и их характеристики

Если здание по каким-либо причинам не подходит для установки оборудования, то можно разместить панели на соседнем строении, а накопитель поставить в подвале.

Преимущества солнечного отопления

Нюансы, на которые стоит обратить внимание при выборе этой системы были рассмотрены выше. И если вы все сделали правильно, то ваша система отопления на солнечных коллекторах доставит вам только приятные моменты. Среди ее достоинств следует отметить:

  • Возможность круглогодичного обеспечения дома теплом, с возможностью регулировки температуры;
  • Полная автономия от централизованных коммунальных сетей и снижение финансовых расходов;
  • Использование солнечной энергии на различные нужды;
  • Длительный эксплуатационный срок оборудования и редкие аварийные ситуации.

Единственное, что останавливает потребителей от покупки солнечной системы для отопления частного дома – это зависимость их работы от географии проживания. Если в вашем регионе ясные дни редкость, то эффективность оборудования будет минимальной.

Системы солнечного теплоснабжения

4.1. Классификация и основные элементы гелиосистем

Системами солнечного теплоснабжения называются системы, использующие в качестве источника тепловой энергии солнечную радиацию. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

По способу использования солнечной радиации системы солнечного низкотемпературного отопления подразделяют на пассивные и активные.

Пассивныминазываются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п. (рис. 4.1.1)).

Рис. 4.1.1 Пассивная низкотемпературная система солнечного отопления “стена-коллектор”: 1 – солнечные лучи; 2 – лучепрозрачный экран; 3 – воздушная заслонка; 4 – нагретый воздух; 5 – охлажденный воздух из помещения; 6 – собственное длинноволновое тепловое излучение массива стены; 7 – черная лучевоспринимающая поверхность стены; 8 – жалюзи.

Активныминазываются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

по назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

по виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

по продолжительности работы (круглогодичные, сезонные);

по техническому решению схем (одно-, двух-, многоконтурные).

Воздух является широко распространенным незамерзающим во всем диапазоне рабочих параметров теплоносителем. При применении его в качестве теплоносителя возможно совмещение систем отопления с системой вентиляции. Однако воздух – малотеплоемкий теплоноситель, что ведет к увеличению расхода металла на устройство систем воздушного отопления по сравнению с водяными системами.

Вода является теплоемким и широкодоступным теплоносителем. Однако при температурах ниже 0°С в нее необходимо добавлять незамерзающие жидкости. Кроме того, нужно учитывать, что вода, насыщенная кислородом, вызывает коррозию трубопроводов и аппаратов. Но расход металла в водяных гелиосистемах значительно ниже, что в большой степени способствует более широкому их применению.

Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в летние и переходные месяцы, в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.

Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы незамерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе, или трансформатора теплоты.

Принципиальная схема системы солнечного теплоснабжения приведена на рис.4.1.2. Она включает три контура циркуляции:

первый контур, состоящий из солнечных коллекторов 1, циркуляционного насоса 8 и жидкостного теплообменника 3;

второй контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8 и теплообменника 3;

третий контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8, водовоздушного теплообменника (калорифера) 5.

Рис. 4.1.2. Принципиальная схема системы солнечного теплоснабжения: 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – теплообменник; 4 – здание; 5 – калорифер; 6 – дублер системы отопления; 7 – дублер системы горячего водоснабжения; 8 – циркуляционный насос; 9 – вентилятор.

Функционирует система солнечного теплоснабжения следующим образом. Теплоноситель (антифриз) теплоприемного контура, нагреваясь в солнечных коллекторах 1, поступает в теплообменник 3, где теплота антифриза передается воде, циркулирующей в межтрубном пространстве теплообменника 3 под действием насоса 8 второго контура. Нагретая вода поступает в бак-аккумулятор 2. Из бака-аккумулятора вода забирается насосом горячего водоснабжения 8, доводится при необходимости до требуемой температуры в дублере 7 и поступает в систему горячего водоснабжения здания. Подпитка бака-аккумулятора осуществляется из водопровода.

Для отопления вода из бака-аккумулятора 2 подается насосом третьего контура 8 в калорифер 5, через который с помощью вентилятора 9 пропускается воздух и, нагревшись, поступает в здание 4. В случае отсутствия солнечной радиации или нехватки тепловой энергии, вырабатываемой солнечными коллекторами, в работу включается дублер 6.

Выбор и компоновка элементов системы солнечного теплоснабжения в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

4.2. Концентрирующие гелиоприемники

Концентрирующие гелиоприемникипредставляют собой сферические или параболические зеркала (рис. 4.2.1), выполненные из полированного металла, в фокус которых помещают тепловоспринимающий элемент (солнечный котел), через который циркулирует теплоноситель. В качестве теплоносителя используют воду или незамерзающие жидкости. При использовании в качестве теплоносителя воды в ночные часы и в холодный период систему обязательно опорожняют для предотвращения ее замерзания.

Для обеспечения высокой эффективности процесса улавливания и преобразования солнечной радиации концентрирующий гелиоприемник должен быть постоянно направлен строго на Солнце. С этой целью гелиоприемник снабжают системой слежения, включающей датчик направления на Солнце, электронный блок преобразования сигналов, электродвигатель с редуктором для поворота конструкции гелиоприемника в двух плоскостях.

Рис. 4.2.1. Концентрирующие гелиоприемники: а – параболический концентратор; б – параболоцилиндрический концентратор; 1 – солнечные лучи; 2 – тепловоспринимающий элемент (солнечный коллектор); 3 – зеркало; 4 – механизм привода системы слежения; 5 – трубопроводы, подводящие и отводящие теплоноситель.

Преимуществом систем с концентрирующими гелиоприемниками является способность выработки теплоты с относительно высокой температурой (до 100 °С) и даже пара. К недостаткам следует отнести высокую стоимость конструкции; необходимость постоянной очистки отражающих поверхностей от пыли; работу только в светлое время суток, а следовательно, потребность в аккумуляторах большого объема; большие энергозатраты на привод системы слежения за ходом Солнца, соизмеримые с вырабатываемой энергией. Эти недостатки сдерживают широкое применение активных низкотемпературных систем солнечного отопления с концентрирующими гелиоприемниками. В последнее время наиболее часто для солнечных низкотемпературных систем отопления применяют плоские гелиоприемники.

4.3. Плоские солнечные коллекторы

Плоский солнечный коллектор– устройство с поглощающей панелью плоской конфигурации и плоской прозрачной изоляцией для поглощения энергии солнечного излучения и преобразования ее в тепловую.

Плоские солнечные коллекторы (рис. 4.3.1) состоят из стеклянного или пластикового покрытия (одинарного, двойного, тройного), тепловоспринимающей панели, окрашенной со стороны, обращенной к солнцу, в черный цвет, изоляции на обратной стороне и корпуса (металлического, пластикового, стеклянного, деревянного).

Рис. 4.3.1. Плоский солнечный коллектор: 1 – солнечные лучи; 2 – остекление; 3 – корпус; 4 – тепловоспринимающая поверхность; 5 – теплоизоляция; 6 – уплотнитель; 7 – собственное длинноволновое излучение тепловоспринимающей пластины.

В качестве тепловоспринимающей панели можно использовать любой металлический или пластмассовый лист с каналами для теплоносителя. Изготавливаются тепловоспринимающие панели из алюминия или стали двух типов: лист-труба и штампованные панели (труба в листе). Пластмассовые панели из-за недолговечности и быстрого старения под действием солнечных лучей, а также из-за малой теплопроводности не находят широкого применения.

Под действием солнечной радиации тепловоспринимающие панели разогреваются до температур 70-80 °С, превышающих температуру окружающей среды, что ведет к возрастанию конвективной теплоотдачи панели в окружающую среду и ее собственного излучения на небосвод. Для достижения более высоких температур теплоносителя поверхность пластины покрывают спектрально-селективными слоями, активно поглощающими коротковолновое излучение солнца и снижающими ее собственное тепловое излучение в длинноволновой части спектра. Такие конструкции на основе “черного никеля”, “черного хрома”, окиси меди на алюминии, окиси меди на меди и другие дорогостоящи (их стоимость часто соизмерима со стоимостью самой тепловоспринимающей панели). Другим способом улучшения характеристик плоских коллекторов является создание вакуума между тепловоспринимающей панелью и прозрачной изоляцией для уменьшения тепловых потерь (солнечные коллекторы четвертого поколения).

Опыт эксплуатации солнечных установок на основе солнечных коллекторов выявил ряд существенных недостатков подобных систем. Прежде всего это высокая стоимость коллекторов. Увеличение эффективности их работы за счет селективных покрытий, повышение прозрачности остекления, вакуумирования, а также устройства системы охлаждения оказываются экономически нерентабельными. Существенным недостатком является необходимость частой очистки стекол от пыли, что практически исключает применение коллектора в промышленных районах. При длительной эксплуатации солнечных коллекторов, особенно в зимних условиях, наблюдается частый выход их из строя из-за неравномерности расширения освещенных и затемненных участков стекла за счет нарушения целостности остекления. Отмечается также большой процент выхода из строя коллекторов при транспортировке и монтаже. Значительным недостатком работы систем с коллекторами является также неравномерность загрузки в течение года и суток. Опыт эксплуатации коллекторов в условиях Европы и европейской части России при высокой доле диффузной радиации (до 50%) показал невозможность создания круглогодичной автономной системы горячего водоснабжения и отопления. Все гелиосистемы с солнечными коллекторами в средних широтах требуют устройства больших по объему баков-аккумуляторов и включения в систему дополнительного источника энергии, что снижает экономический эффект от их применения. В связи с этим наиболее целесообразно их использование в районах с высокой средней интенсивностью солнечной радиации (не ниже 300 Вт/м 2).

Потенциальные возможности использования гелиоэнергетики на Украине

На территории Украины энергия солнечной радиации за один среднегодовой световой день составляет в среднем 4 кВт ∙ час на 1м 2 (в летние дни – до 6 – 6.5 кВт ∙ час) т. е. около 1,5 тысячи кВт ∙ час за год на каждый квадратный метр. Это примерно столько же, сколько в средней Европе, где использование солнечной энергии носит самый широкий характер.

Кроме благоприятных климатических условий на Украине имеются высоко квалифицированные научные кадры в области использования солнечной энергии. После возвращения проф. Бойко Б.Т. из ЮНЕСКО, где он возглавлял международную программу ЮНЕСКО по использованию солнечной энергии (1973-1979г.), он начал интенсивную научную и организационную деятельность в Харьковском политехническом институте (ныне Национальный Технический Университет - ХПИ) по развитию нового научного и учебного направления материаловедения для гелиоэнергетики. Уже в 1983 году в соответствии с приказом Минвуза СССР N 885 от 13.07.83 г. в Харьковском Политехническом Институте впервые в практике высшей школы СССР была начатая подготовка инженеров-физиков с профилированием в области материаловедения для гелиоэнергетики в рамках специальности “Физика металлов”. Это заложило основы создания в 1988 году выпускающей кафедры “Физическое материаловедение для электроники и гелиоэнергетики” (ФМЭГ). Кафедра ФМЭГ в содружестве с Научно-исследовательским институтом технологии приборостроения (Харьков) в рамках космической программы Украины принимала участие в создании кремниевых солнечных батарей с к.п.д. 13- 14% для украинских космических аппаратов.

Начиная с 1994 года, кафедра ФМЭГ при поддержке Штутгардского Университета и Европейского Сообщества, а также Цюрихского Технического Университета и Швейцарского Национального Научного Общества принимает активное участие в научных исследованиях по разработке пленочных ФЭП.