Датчик движения и освещенности. Схема подключения и монтаж датчика освещенности Схема подключения датчика света из инструкции


ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА

СРЕДНЕСПИСОЧНАЯ ЧИСЛЕННОСТЬ
СОТРУДНИКОВ В 2017 ГОДУ

ОФИСЫ
ПО ВСЕМУ МИРУ

ПЛАНЕТЫ, НА КОТОРЫХ ИСПОЛЬЗУЮТСЯ НАШИ
ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА

СРЕДНЕСПИСОЧНАЯ ЧИСЛЕННОСТЬ
СОТРУДНИКОВ В 2017 ГОДУ

ОФИСЫ
ПО ВСЕМУ МИРУ

Службы поддержки

Служба технической поддержки клиентов компании Vaisala является единой справочной службой для направления общих или технических вопросов, касающихся изделий, систем и услуг компании Vaisala.
Служба технической поддержки клиентов и центры мониторинга работают в круглосуточном режиме без выходных и праздничных дней.

Наши специализированные региональные службы поддержки могут быстро получать информацию о ваших проблемах и оперативно определять их. Мы стремимся решать все проблемы оперативно и в максимально короткие сроки. Мы также имеем возможность оказывать общую поддержку по вопросам, связанным с ремонтом, калибровкой, жалобами, контрактами на предоставление услуг, запасными частями и претензиями по гарантии.

Измерения сжатого воздуха

Чистый и сухой сжатый воздух можно обеспечить, используя аппаратуру для точного измерения точки росы. Стабильное измерение точки росы позволяет также не допускать пересушивания и экономить энергию.

Контроль влажности в опасных зонах

Контроль влажности играет важнейшую роль во многих помещениях, в которых хранятся такие легковоспламеняющиеся или взрывоопасные материалы, как топливо, химикаты, взрывчатые вещества. Такие помещения обозначаются как опасные зоны ввиду наличия в них потенциально взрывоопасной среды. Для обеспечения безопасного ведения работ в этих зонах необходима специально разработанная и сертифицированная измерительная аппаратура.

Смазочные и гидравлические системы

Уникальная технология определения содержания влаги в масле, разработанная компанией Vaisala, позволяет непрерывно и в режиме реального времени контролировать водную активность масла и непосредственно определять допускаемый предел образования излишней влаги в масле. В отличие от традиционных методов выборочного контроля, при использовании которых потребуется ожидать несколько дней или недель до получения результатов проверки, технология непрерывного измерения от компании Vaisala позволяет обеспечивать надежность работы оборудования на постоянной основе.

Метрология

Компания Vaisala предлагает средства и услуги для калибровки и обеспечения надлежащего функционирования приборов для измерения влажности, точки росы, содержания углекислого газа и температуры. Ручные приборы для измерения всех этих параметров можно использовать для калибровки полевой измерительной аппаратуры и в качестве образцовых средств измерений.

Контроль производства литиевых аккумуляторных батарей

Компания Vaisala предлагает химически стойкий, полимерный датчик точки росы, который отличается долговременной надежностью и очень малым дрейфом показаний при интенсивном использовании. Калиброванные устройства, на которых используется этот датчик, поставляются в виде низкозатратных измерительных преобразователей или полностью конфигурируемых переносных контрольно-измерительных приборов.

Контроль полупроводниковых приборов

Точные и стабильные измерительные устройства позволяют контролировать микросреду, окружающую полупроводниковые приборы.

Компания Vaisala поставляет оригинальные компактные модули для измерения относительной влажности и барометрического давления.

Измерение влажности материалов конструкций

Комплект приборов для измерения влажности материалов конструкций Vaisala HUMICAP® SHM40 представляет собой простое и надежное решение для измерения влажности железобетонных и других конструкций. Данный комплект предназначен для скважинного метода, в котором наконечник датчика влажности оставляется в скважине до тех пор, пока не будет достигнуто состояние равновесия, и появится возможность считывания значений влажности.

Контроль сушки в кипящем слое

Точный контроль влажности осушающего воздуха необходим для оптимизации процесса сушки. Условия влажности и температуры могут варьироваться. Во многих процессах сушки, особенно в фармацевтической промышленности, выходящий воздух может иметь высокое содержание испарившихся растворителей и химических веществ. Это вызывает необходимость применения очень стабильных средств измерения. В большинстве жестких условий эксплуатации выход сушилки в кипящем слое рассматривается как опасная зона, в которой необходимо использовать измерительную аппаратуру в искробезопасном исполнении.

Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине. Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение. В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.

Фоторезистор, как следует из названия, имеет прямое отношение к резисторам, которые часто встречаются практически в любых электронных схемах. Основной характеристикой обычного резистора является величина его сопротивления. От него зависят напряжение и ток, с помощью резистора мы выставляем нужные режимы работы других компонентов. Как правило, значение сопротивления у резистора в одних и тех же условиях эксплуатации практически не меняется.

В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.

Фоторезисторы достаточно активно применяются в самых разнообразных системах. Самый распространенный вариант применения - фонари уличного освещения. Если на город опускается ночь или стало пасмурно, то огни включаются автоматически. Можно сделать из фоторезистора экономную лампочку для дома, включающуюся не по расписанию, а в зависимости от освещения. На базе датчика освещенности можно сделать даже охранную систему, которая будет срабатывать сразу после того, как закрытый шкаф или сейф открыли и осветили. Как всегда, сфера применения любых датчиков ардуино ограничена лишь нашей фантазией.

Какие фоторезисторы можно купить в интернет-магазинах

Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.

Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:


На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.

Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. - выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.

Маркировка фоторезистора

Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы - ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 - фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали

У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:

  • VT83N1 - 12-100кОм (12K – освещенный, 100K – в темноте)
  • VT93N2 - 48-500кОм (48K – освещенный, 100K – в темноте).

Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали. У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания - понятие условное. Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.

На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.

Достоинства и недостатки датчика

Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков. К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает - датчик не успевает отреагировать. Если же частота изменения довольно велика - резистор вообще перестанет «видеть», что освещённость меняется.

К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе – подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону. Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Пример скетча датчика освещенности на фоторезисторе

Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.

Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.

Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.

Алгоритм работы таков:

  • Определяем уровень сигнала с аналогового пина.
  • Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
  • Если уровень меньше порогового – темно, нужно включать светодиод.
  • Иначе – выключаем светодиод.
#define PIN_LED 13 #define PIN_PHOTO_SENSOR A0 void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); Serial.println(val); if (val < 300) { digitalWrite(PIN_LED, LOW); } else { digitalWrite(PIN_LED, HIGH); } }

Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.

При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

Пример скетча:

#define PIN_LED 10 #define PIN_PHOTO_SENSOR A0 void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); Serial.println(val); int ledPower = map(val, 0, 1023, 0, 255); // Преобразуем полученное значение в уровень PWM-сигнала. Чем меньше значение освещенности, тем меньше мощности мы должны подавать на светодиод через ШИМ. analogWrite(PIN_LED, ledPower); // Меняем яркость }

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Int val = 1023 – analogRead(PIN_PHOTO_RESISTOR);

Схема датчика освещения на фоторезисторе и реле

Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.

#define PIN_RELAY 10 #define PIN_PHOTO_SENSOR A0 void setup() { pinMode(PIN_RELAY, OUTPUT); digitalWrite(PIN_RELAY, HIGH); } void loop() { int val = analogRead(PIN_PHOTO_SENSOR); if (val < 300) { // Светло, выключаем реле digitalWrite(PIN_RELAY, HIGH); } else { // Темновато, включаем лампочку digitalWrite(PIN_RELAY, LOW); } }

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».

В последнее время для наружного освещения все чаще применяют датчики включения освещения. Ведь они позволяют не только автоматизировать процесс включения освещения, но и позволяют неплохо сэкономить.

При этом стоимость таких датчиков находится на вполне приемлемом уровне, что по заявлению торговых компаний позволяет окупить их буквально в течении года. Поэтому и мы решили более детально рассмотреть данные приборы и дать вам рекомендации по их выбору, установке и подключению.

Устройство датчика освещенности

Прежде, чем приступать непосредственно к выбору, давайте ознакомимся с устройством и принципом действия датчиков данного типа. Они могут быть выполнены на фоторезисторе или фотодиоде, но принцип действия от этого не меняется.

Итак:

  • Датчики света для для своей нормальной работы должны быть подключены к электрической сети. То есть, на выводы датчика должны быть подведены фаза и ноль. Кроме этого, там есть третий провод, который подает напряжение непосредственно на сеть освещения, но о нем мы поговорим, когда будем подключать наш датчик.
  • Сразу к выводам датчика подключен диодный мост, который преобразует переменное напряжение в постоянное. Кроме того, там установлен конденсатор, который сглаживает постоянное напряжение.
  • Параллельно схеме диодного моста подключается наш фоторезистор с добавочным сопротивлением. Именно на это добавочное сопротивление вы воздействуете, вращая ручку регулятора на корпусе датчика.
  • Сопротивление фоторезистора изменяется в зависимости от уровня освещенности. Чем темнее, тем выше сопротивление нашего фоторезистора. Соответственно выше напряжение на его контактах.
  • При определенном напряжении открывается транзистор, подключенный параллельно нашим сопротивлениям. Благодаря этому образуется цепь на катушку силового реле.
  • Реле срабатывает и замыкает цепь. А благодаря тому, что к контактам этого реле подключены наши провода питания сети освещения, включается свет.
  • При увеличении уровня освещенности датчик ночного освещения размыкает контакты нашего силового реле. Происходит это по причине снижения сопротивления нашего фоторезистора, которое влечет за собой соответственно снижение напряжения и закрытие транзистора. Следствием этого является размыкание цепи, которая питает катушку силового реле.

Выбор датчиков освещенности

Имея общее представление о работе датчика, можно приступать непосредственно к его выбору. Здесь мы советуем вам обратить внимание на некоторые аспекты.

  • Как и любое коммутационное устройство, перед установкой фотодатчик для уличного освещения стоит проверить на соответствие коммутируемой нагрузки. На данный момент на рынке представлены модели с номинальным током в 6 и 10А. Чуть реже встречаются модели на 16 и 25А. Но, честно говоря, я бы не стал доверять этим цифрам и как минимум на один шаг занизил их.

Обратите внимание! Согласно п.6.2.3 ПУЭ, каждая групповая линия должна содержать не более 20 ламп. Если принять мощность каждой лампы в 100Вт, то получается, что датчика в 10А нам будет вполне достаточно. Установка большего количества ламп в одной группе, согласно п.6.3.4 ПУЭ, потребует от вас установки дополнительных автоматических выключателей или предохранителей.

  • Следующим параметром, на который стоит обратить внимание, является возможность регулирования датчика. Обычно минимальным значением является 2лк. А вот максимальное значение может колебаться. Наиболее распространенными являются значения в 50 и 2000лк. Насколько вам нужна регулировка в широком спектре — решать вам, но я бы напомнил, что возможности регулировки также отражает цена датчика. Поэтому выбор минимального регулирования, по-моему, вполне оправдан.
  • Нельзя забывать и то, что датчик освещенности предназначен для наружной установки. Поэтому защита от влаги и пыли как минимум не будет лишней. Данный параметр указывают цифры после аббревиатуры «IP». Обычно это IP44, но могут быть и более высокие значения.

В каждой квартире или частном доме имеются помещения, не требующие постоянного освещения. Например, в коридорах и на лестницах свет нужен только во время нахождения здесь людей. Поэтому, в целях экономии электроэнергии хозяева устанавливают датчик движения и освещенности, разрывающий питающую цепь. Его влияние распространяется на определенную зону, и при начале в ней любого движения, происходит замыкание контактов и последующее включение света.

Принцип работы

Принцип действия датчика довольно простой. Когда в установленную зону, на которую распространяется чувствительность прибора попадает движущийся предмет, происходит его срабатывание с последующим включением освещения. После прекращения перемещения наступает автоматическое размыкание цепи и отключение осветительных приборов.

Большинство подобных устройств имеют установленный угол обзора, равный 180 градусам. Существуют модели, охватывающие 360 градусов, применяемые в больших помещениях.

Подключение прибора движения и освещения в цепь такое же простое, как и . Основной функцией является замыкание и размыкание электрической цепи с подключенными светильниками. Поэтому схемы подключения обоих приборов практически одинаковы. Схема прилагается к каждому устройству в виде инструкции, а у наиболее качественных моделей от известных производителей схемы наносятся на корпус.

Задняя крышка датчика прикрывает клеммную колодку вместе с подключением проводников. Многожильные провода рекомендуется подключать с помощью изолированных наконечников НШВИ. Для подачи питания используются два провода - фазный и нулевой. Выходя из датчика, фаза подключается к светильнику, поэтому при срабатывании, контакты замыкаются и ток начинает поступать к лампе накаливания.

Классификация

Датчики представлены различными видами, каждый из которых лучше всего подходит для тех или иных условий эксплуатации. Например, датчики движения, устанавливаемые на улице, обладают высокой степенью защищенности корпуса с IP не ниже 55. Внутри помещений вполне достаточно IP22 и более.

В соответствии с типом питания приборы классифицируются на подключаемые к сети 220 вольт и беспроводные, питающиеся от аккумуляторов или батареек. Первая группа считается наиболее востребованной и многочисленной, а вторая используется преимущественно вместе с низковольтными осветительными приборами.

Основной классификацией являются способы, позволяющие определить начало движения в контролируемой зоне. Они основаны на различных принципах обнаружения:

  • Акустические устройства, реагирующие на шум. Относятся к категории пассивной аппаратуры. Они включаются при появлении различных звуков.
  • Приборы движения и освещённости инфракрасного типа. Срабатывают при наличии теплового излучения, выделяемого теплокровными существами - людьми или животными. Реакция на животных нередко приводит к ложным срабатываниям. Эти виды датчиков тоже являются пассивной коммутационной аппаратурой.
  • К видам активных устройств можно отнести различные типы микроволновых приборов, оборудованных сенсором. Они испускают излучение в микроволновом диапазоне и следят за их возвращением. Когда в зону контроля попадает передвигающийся объект, изменяющиеся волны дают команду на срабатывание или выключение прибора. Для охранных систем применяются устройства с повышенной чувствительностью, способные определять объект независимо от наличия конструктивных элементов и других помех.
  • Примерно по аналогичной схеме работают ультразвуковые коммутирующие сигнальные устройства. Они отличаются лишь диапазоном, в котором происходит излучение волн. Применяются очень редко и только в нежилых помещениях, или используются как уличный прибор.
  • Наиболее дорогими и эффективными считаются комбинированные устройства, сочетающие в себе различные способы фиксации движения. Такая конструкция предотвращает ложные срабатывания, повышая надежность следящих систем.

Основные параметры датчиков

Определившись с конструкцией, необходимо сделать правильный выбор параметров и технических характеристик данных устройств.

Важным показателем считается обзорный угол, который может составлять от 90 до 360 градусов по горизонтали. Этот показатель выбирается исходя из количества направлений, по которым возможно подойти к нужной точке. Если датчик монтируется на стену - достаточно и 180 градусов, а при закреплении к столбу потребуется уже 360. Во внутренних помещениях можно обойтись узконаправленными приборами, а при наличии нескольких дверей потребуются устройства с расширенными функциями. Эти модели отличаются высокой стоимостью, поэтому при выборе следует руководствоваться конкретными условиями эксплуатации.

Существует и угол обзора по вертикали, составляющий для дешевых устройств примерно 15-20 градусов. Дорогие устройства могут работать в вертикальном диапазоне до 180 градусов. Такие приборы применяются в системах охраны, поскольку для регулировки света они экономически нецелесообразны. Устанавливаются на оптимальной высоте, во избежание так называемого мертвого пространства.

Немаловажную роль играет расстояние, на котором прибор считается наиболее эффективным. Внутри помещений вполне достаточно 5-7 метров. Уличный датчик может иметь большую длину действия, которая зависит от площади контролируемой зоны. Однако, если этот показатель окажется чересчур большим, возможен рост количества неправильных или ложных срабатываний.

Следует учитывать и фактор мощности осветительных приборов, подключенных к данной цепи. Все типы датчиков движения соответствуют определенной нагрузке и силе тока с установленным номиналом. Поэтому, выбирая то или иное устройство, нужно учитывать общую мощность ламп, установленных в люстрах, плафонах и т.д.

Дополнительные критерии выбора

Помимо основных параметров, существуют и другие критерии, которые в определенное время могут приобрести решающее значение.

Датчики движения и освещенности выбирается по месту монтажа и способу крепления. Они могут закрепляться на стенах или потолках и быть установленными на кронштейне, как это предусмотрено для корпусных моделей. Все варианты скрытой установки обеспечиваются миниатюрными встраиваемыми устройствами, монтируемыми в специальных углублениях в незаметных местах.

Некоторые датчики обладают дополнительными функциями. Их возможности существенно расширяются за счет встроенного в одном корпусе датчика освещенности. Когда прибор устанавливается на улице или возле окна, то в дневное время его работа не требуется поскольку света и так достаточно. Фотореле может подключаться отдельно или входить в конструкцию датчика движения.

Полезной функцией является защита от домашних животных - собак, кошек и других. При ее наличии ложные срабатывания случаются значительно реже. То же самое можно сказать и о задержке отключения света. Во многих случаях отключение света происходит сразу же после выхода объекта из зоны действия прибора. Это не всегда удобно, поскольку освещение бывает еще нужно. Поэтому наиболее удобными считаются модели не только с задержкой, но и с возможностью ее регулировки.

После приобретения датчика для включения света, его необходимо правильно разместить, обеспечив тем самым его корректную работу. С связи с этим необходимо соблюдать установленные нормы и правила:

  • Осветительные приборы не должны располагаться рядом с датчиком.
  • То же самое касается кондиционеров и систем отопления, поскольку возможна реакция датчика на воздушные потоки.
  • Слишком большая высота установки расширяет зону контроля, но одновременно прибор теряет свою чувствительность.
  • На пути датчика не должно быть крупных объектов, заслоняющих обширное пространство.
  • В помещениях с большими площадями датчики движения рекомендуется размещать на потолке. Сектор обзора таких устройств должен составлять 360 градусов. При необходимости включения освещения он устанавливается по центру, обеспечивая минимальное количество мертвых зон.

Как подключить

В самом простом варианте подключение датчика выполняется в разрыв проводника фазы, подводимого непосредственно к лампе. Данный способ прекрасно работает в абсолютно темных помещениях, где нет ни одного окна.

В этом случае проводники фазы и нуля заводятся в датчик со стороны входа и подключаются к соответствующим клеммам L и N. На выходе фазный провод идет далее к лампе накаливания, а нулевой проводник соединяется с ближайшим нулем электрической цепи.

При использовании датчика для включения света на улице, дополнительно понадобится или датчик освещенности, работающий в автоматическом режиме. Вместо него на линии может быть установлен отдельный выключатель, включаемый и выключаемый вручную. Таким образом, предотвращается ненужное включение света при наличии нормального естественного освещения.

Подобные дополнительные комбинирующие устройства также устанавливаются в разрыв фазы. Если используется фотореле, его нужно устанавливать перед датчиком движения. За счет этого питание к прибору будет поступать только с наступлением темноты, а днем он находится в выключенном состоянии. Срок службы датчика движения существенно увеличивается, поскольку его ресурс ограничен определенным количеством срабатываний.

Существенным недостатком данных схем является невозможность длительного использования включенного освещения. Свет будет сразу же пропадать после прекращения движения. Этого можно избежать путем параллельного подключения совместно с детектором обычного выключателя. Когда он находится в выключенном положении, будет работать датчик. После включения датчик перестает работать и свет горит на протяжении всего времени до прерывания цепи выключателем.

Настройки и регулировки

Правильная работа датчика для включения света во многом зависит от его настроек.

Для того чтобы он корректно функционировал, необходимо выполнить следующие действия:

  • Настройка времени (TIME). Устанавливает временной промежуток, в течение которого свет будет включен от момента последнего обнаруженного передвижения. Это значение может выставляться в диапазоне 1-600 секунд. Для этих целей регулятор устанавливается в нужное положение, в сторону увеличения или уменьшения.
  • Настройка срабатываний в соответствии с уровнем освещенности (LUX). Обеспечивает корректную работу датчика в светлое время суток. Порог срабатывания устанавливается самостоятельно с помощью еще одной регулировочной ручки. Как правило, наиболее оптимальное значение подбирается экспериментальным путем.
  • Чувствительность к срабатыванию (SENS). Обеспечивает нужную реакцию датчика при наличии движения. Если срабатываний слишком много, чувствительность прибора рекомендуется снизить.

Помещений используют специальный прибор, в состав которого входит датчик освещенности. Такие замеры делаются на производстве и в офиса -, везде, где необходимо соблюдение определенных норм по освещению. На основании произведенных измерений принимают конкретные решения по улучшению данного параметра. Подобные замеры очень важны, так как от этого напрямую зависит здоровье людей, которые долгое время работают в таких помещениях.

Недостаточная освещенность может привести к травматизму или постепенной потери зрения из-за переутомления.

Единицей измерения является Люмен. Кроме датчик освещенности используется в Примером такого использования может служить автоматическое включение или отключение уличного освещения в зависимости от времени суток. Кроме этого, такие датчики широко применяются на производстве, где они участвуют в управлении технологическим процессом. Давайте рассмотрим принцип действия этих устройств на простых примерах.

Основным элементом в таких схемах является фоторезистор, который меняет свое в зависимости от уровня освещенности. Это свойство было замечено у В настоящее время выпускается довольно

большое количество фоторезисторов для самых различных сфер их применения. Основными параметрами таких устройств являются максимальное напряжение, ток и чувствительность самого прибора. Датчик освещенности таким образом состоит из чувствительного к свету элемента, схемы управления и выходного каскада, который управляет реле либо идет на индикацию.

Собрать простое устройство, которое будет управлять уличным освещением, например, частного дома, можно своими силами. Для этого не нужны дефицитные детали - все необходимое можно купить в специализированных магазинах. Несложную схему для изготовления самого устройства можно найти в интернете. Датчик освещенности в этом случае будет располагаться на улице, а лучше всего на крыше дома, чтобы на него

не падала тень. Выходной частью схемы, как правило, являются контакты реле, которые и управляют освещением. Кроме этого, в холодное время суток такое устройство вполне можно использовать для управления отоплением. Как видите, датчик освещенности уличный может выполнять сразу несколько полезных функций. У вас появится умный дом, который сам включит дополнительные батареи ночью.

Современные датчики освещения обладают хорошими характеристиками и надежны в эксплуатации. Встроенная регулировка позволяет настроить наиболее оптимальный режим работы уличного освещения. Дополнительные схемы задержки предотвращают ложное срабатывание устройства. После получения сигнала на включение или отключение освещения произойдет задержка по времени на выполнение этой команды. Выносная чувствительная часть прибора позволяет осуществить режим дистанционного управления. Обычно датчики оборудованы переключателем, с помощью которого можно легко вернуться в режим ручного управления.