Что такое интерференционная картина. Методы получения интерференционной картины

Интерференция света

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света. Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.

Условие когерентности световых волн

Причина отсутствия интерференционной картины в опыте с двумя лампочками в том, что световые волны, излучаемые независимыми источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную во времени разность фаз в любой точке пространства. Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить постоянство разности фаз от двух независимых источников. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими обычно длину около метра. И такие цуги волн от обоих источников налагаются друг на друга. В результате амплитуда колебаний в любой точке пространства хаотично меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты относительно друг друга по фазе. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной 1 .

Юнг Томас (1773-1829) - английский ученый с необыкновенной широтой научных интересов и многогранностью дарований. Одновременно известный врач и физик с огромной интуицией, астроном и механик, металлург и египтолог, физиолог и полиглот, талантливый музыкант и даже способный гимнаст. Главными его заслугами являются открытие интерференции света (ввел в физику термин «интерференция») и объяснение явления дифракции на основе волновой теории. Первым измерил длину световой волны.

Никакой устойчивой картины с определенным распределением максимумов и минимумов освепденности в пространстве не наблюдается.

Интерференция в тонких пленках

Тем не менее интеференцию света удается наблюдать. Хотя ее и наблюдали очень давно, но только не придавали этому значения.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов такой пленки керосина либо нефти на поверхности воды. «Мыльный пузырь, витая в воздухе... зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 8.48), одна на которых (1) отражается от наружной поверхности пленки, а другая (2) - от внутренней. При этом происходит интеференция световых волн - сложение двух волн, вследствии которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

1 Исключение составляют квантовые источники света, лазеры, созданные в 1960 г.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, возникает из-за того, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два цуга, а затем эти части сводятся вместе и интерферируют.

Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны с разной длиной волны . Для взаимного усиления волн, отличающихся друг от друга длиной волны (углы падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона

Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плосковыпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название колец Ньютона.

Возьмите плосковыпуклую линзу с малой кривизной сферической поверхности и положите ее выпуклостью вниз на стеклянную пластину. Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец (см. рис. III, 1 на цветной вклейке). Это и есть кольца Ньютона. Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фполетового конца спектра к красному; красные кольца имеют максимальный радиус. Расстояния между соседними кольцами уменьшаются с увеличением их радиусов (см. рис. III, 2, 3 на цветной вклейке).

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда волна определенной длины волны падает почти перпендикулярно на плосковыпуклую линзу (рис. 8.49). Волна 1 появляется к результате отражения от выпуклой поверхности линзы на границе сред стекло - воздух, а волна 2 - в результате отражения от пластины на границе сред воздух - стекло. Эти волны когерентны: они имеют одинаковую длину волны и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Напротив, если вторая волнa отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны погасят друг друга.

Если известен радиус кривизны R выпуклой поверхности линзы, то можно вычисмшть, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волины определенной длины волны , гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Длина световой волны. В результате измерений было установлено, что для красного света кр = 8 . 10 -7 м, а для фиолетового - ф = 4 . 10 7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала. Поясним это на простом примере. Представьте себе среднюю морскую волну длиной волны в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Эвропы. Длина световой волны, увеличенной в той же пропорции лишь ненамного превысила бы ширину этой страницы.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

В природе нет никаких красок, есть лишь волны разных длин волн. Глаз - сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10 6 см) разница в длинах световых волн. Интересно, что большинство животных не способны различать цвета. Они всегда видят черно-белую картину. Не различают цвета также дальтоники - люди, страдающие цветовой слепотой.

При переходе света из одной среды в другую длина волны изменяется. Это можно увидеть. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как =v, то при этом должна уменьшиться в n раз либо частота v, либо длина волны. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.

Интерференция электромагнитных волн

В опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных волн (радиоволн) (см. § 54).

Генератор и приемник располагают друг против друга (рис. 8.50). Затем подносят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Явление объясняется следующим образом. Часть волны из рупора генератора попадает непосредственно в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна разность хода целому числу длин волн или нечетному числу полуволн.

Наблюдение интерференции света доказывает, что свет при распространении проявляет волновые свойства. Интерференционные опыты позволяют измерить длину световой волны: она очень мала - от 4 10 -7 до 8 10 -7 м.

Интерференция вокруг нас

На этом уроке мы с вами уже узнали, что такое интерференция света. Давайте подведем итого нашего урока. Итак, делаем вывод, что интерференцией света называют нелинейное сложение интенсивностей двух или нескольких световых волн, которые в пространстве чередуются максимальными или минимальными уровнями интенсивности. Такое распределение еще называют интерференционной картиной.

А сейчас давайте попробуем вспомнить, где нам в повседневной жизни встречались такие явления, как интерференция и где ее можно применить.

Каждый из вас в детстве увлекался запусканием мыльных пузырей. Вспомните, как выдувая мыльный пузырь, он медленно двигался в пространстве, переливаясь и меняя свою окраску. Вот то явление, которое происходит с мыльным пузырем на свету, называют интерференцией в тонких пленках.



То есть, лучи, которые падают и отражаются от внутренней границы плёнки, интерферируют. Но в связи с тем, что толщина пленки не может быть постоянной, то в зависимости от изменения ее толщины, постоянно меняется и окраска пленки. Если быть более кратким, то такие радужные цвета мыльных пузырей выходят за счет интерференции световых волн и в зависимости от толщины его пленки.

Так как из-за испарения воды пленка мыльного пузыря становиться все тоньше и тоньше, то следственно и цвет ее изменяется. Пока эта пленка еще толстая, то красный компонент исчезает из белого света, и в итоге мы получаем сине-зеленое отражение. И чем тоньше становиться пленка, тем больше цветовых компонентов исчезает. После красного компонента по мере утончения пленки, исчезает желтый и остается синий, потом пропадает зеленый и остается пурпурный, а после исчезновения синего компонента, мы наблюдаем золотисто-желтый, и в итоге мы перестаем видеть отражение совсем. И когда мыльный пузырь доходит до этой фазы, то скорей всего, он скоро лопнет.

Конечно же, цвет мыльного пузыря зависит не только от толщины пленки, но и от угла, с которым луч света сталкивается. Поэтому, если допустить, что толщина пленки была бы везде одинаковой, то все равно бы мы с вами наблюдали бы его различные цвета, благодаря движению пузыря. Но, а так, как из-за гравитации, его толщина постоянно меняется, стягивая жидкость в его нижнюю часть, то мы наблюдаем движение разноцветных полос, движущихся сверху вниз.

Каждый из вас, наверное, бывая на морском побережье, наблюдал, как переливаются всеми цветами радуги морские ракушки, птичьи перья или после отплывающего катера остается цветная пленка на поверхности воды от масляных пленок, все эти примеры можно также объяснить явлением интерференции.

Также проявления интерференции света можно наблюдать, рассматривая необычные рисунки на крыльях некоторых бабочек, светлячков и других насекомых.

Оперение павлинов-самцов также привлекает своей красочной и яркой расцветкой. Здесь встречаются и насыщенный синий оттенок, и ярко-зеленый, и золотистый. Если мы рассмотрим картинку внизу, то мы можем наблюдать в переливах перьев павлина тот же эффект, как и у мыльных пузырей.



Но на самом деле такое разнообразие красочного оперения, является всего-навсего иллюзией, так как множество оттенков оперения вызванный явлением интерференции света, а на самом деле из-за красящего пигмента меланина, перья этих птиц имеют в основном коричневый цвет.

Дело в том, что рассмотреть перо павлина под микроскопом, то мы можем наблюдать, то что, каждое перо состоит из двухмерных кристаллических структур. В их состав входят прутики меланина, которые связаны между собой белком кератином. А так как, и количеству этих прутиков, и интервалам между ними, свойственно видоизменятся, то это искажает отражение световых волн, и при попадании на перья мы наблюдаем такое буйство красок.



Кроме уже перечисленных примеров, мы еще наблюдаем интерференцию в тонких пластинках. К таким выдам интерференции можно отнести лунный камень, перламутр, опал или жемчуг. И таких примеров можно найти очень много.

1. Как получают когерентные световые волны!
2. В чем состоит явление интерференции света!
3. С какой физической характеристикой световых волн связано различие в цвете!
4. После удара камнем по прозрачному льду возникают трещины, переливающиеся всеми цветами радуги. Почему!
5. Длина волны света в воде уменьшается в n раз (n - показатель преломления воды относительно воздуха). Означает ли это, что ныряльщик под водой не может видеть окружающие предметы в естественном свете!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Одинаковой частоты, то в месте встречи возникает интерференционная картина . Однако если попытаться поставить такой же опыт с помощью двух независимых источников света, излучающих одинаковый свет, то никакой интерференционной картины не возникнет — в месте встречи обеих волн мы будем наблюдать просто суммирование интенсивностей света.

В 1675 г. Ньютон создал специальную установку «кольца Ньютона », что позволило ему наблюдать интерференцию , но он не нашел объяснения происхождению световых максимумов и минимумов.

В 1801 г. Томас Юнг смог наблюдать интерференцию света при помощи установки:

.

Яркий источник света С попадает в щель S. Когда световая волна огибает края этой щели, т.е. наблюдается явление дифракции , то освещает две узкие щели S 1 и S 2 . По причине явления дифракции из обеих щелей выходят две волны, которые частично перекрывают друг друга. В этой области возникает интерференция, а на экране М видно систему интерференционных максимумов и минимумов, которые проявляются в виде полос. Томас Юнг пояснил происхождение этих полос как явление интерференции волн и вычислил длину волны , получив значение λ ≈ 5 · 10 -7 м.

Кроме установки Юнга, разработан ряд других устройств, позволяющих увидеть возникновение интерференции света.

Если в установке Юнга убрать экран с щелью S, то источник света станет непосредственно освещать щели S 1 и S 2 . При этом интерференционная картина исчезнет. Но убрав щель S, не меняется частотная характеристика света , и обе щели - S 1 и S 2 - пропускают световые волны с одинаковой частотой.

Видно, в случае, когда условие равенства частот достаточное для возникновения интерференции от сложения синусоидальных волн, а для световых волн этого условия недостаточно. Причина заключается в несинусоидальности световых волн, что в случае интерференции играет решающую роль.

При сложении некогерентных волн нет интерференции; средняя интенсивность волны в любой точке равна сумме интенсивностей слагаемых некогерентных волн.

Интерференционная картина возникает лишь в случае сложения когерентных световых волн . Это позволяет объяснить наличие в опыте Юнга щели S. В этой установке обе щели S 1 и S 2 лежат на одном фронте волны и возбуждаются одним общим цугом (рядом возмущений с перерывами между ними), исходящим из щели S. Поэтому из обеих щелей исходят световые волны с одинаковой фазой, т. е. когерентные волны, дающие на экране интерференционную картину.

Если же щель S убрать, то щели S 1 и S 2 будут возбуждаться разными цугами, которые берут свое начало из различных участков света . Волны, исходящие из обеих щелей, окажутся некогерентными, и интерференционная картина исчезнет.

В каждой точке две распространяющиеся в пространстве волны дают геометрическую сумму своих колебаний. Этот принцип называется суперпозицией волн. Указанный закон соблюдается с невероятной точностью. Однако в редких случаях он может игнорироваться. Это касается ситуаций, при которых волны распространяются в сложных средах, когда их интенсивность (амплитуда) становится очень большой. Данный принцип означает, что на некоторое количество электромагнитных волн, распространяющихся в определенной среде, сама среда откликается совершенно конкретным образом - она реагирует только на одну волну, как будто других рядом нет. Математически это значит, что в любой точке выбранной среды напряженность и индукция электромагнитного поля будут равны векторной сумме магнитных индукций и напряженностей всех совокупных полей. Вследствие принципа суперпозиции электромагнитных волн возникают такие явления, как дифракция и интерференция света. Они интересны с физической точки зрения, кроме того, поражают своей красотой.

Что такое интерференция?

Рассматривать данное явление можно только с соблюдением специальных условий. Интерференция света - это образование полос ослабления и усиления, которые чередуются друг с другом. Одним из важных условий является наложение электромагнитных волн (пучков света) друг на друга, причем их количество должно быть от двух и более. Стоячая волна является частным случаем. Необходимо заметить, что интерференция - это сугубо волновой эффект, применимый не только к свету. В стоячей волне, которая и образуется благодаря наложению на отраженную или падающую волну, наблюдаются максимумы (пучности) и минимумы (узлы) интенсивности, которые чередуются друг с другом.

Основные условия

Интерференция волн обусловлена их когерентностью. Что означает этот термин? Когерентность - это согласованность волн по фазе. Если две волны, которые идут от разных источников, наложить друг на друга, то их фазы будут меняться беспорядочно. Световые волны являются следствием излучения атомов, поэтому каждая из них - это результат наложения огромного количества составляющих.

Минимумы и максимумы

Для появления «правильных» усилений и ослаблений суммарных волн в пространстве необходимо, чтобы складываемые составляющие в выбранной точке друг друга гасили. То есть длительное время электромагнитные волны должны были бы находиться в противофазе, чтобы разность фаз постоянно оставалась одинаковой. Максимум же появляется в момент нахождения составляющих волн в одной фазе, то есть когда они усиливаются. Интерференция света наблюдается при условии постоянной разности фаз в данной точке. И такие волны называются когерентными.

Естественные источники

Когда можно наблюдать такое явление, как интерференция света? Излучаемые электромагнитные волны от естественных источников некогерентны, потому что они беспорядочно создаются разными атомами, обычно совершенно несогласованными друг с другом. Каждая выпущенная атомом отдельная волна представляет собой отрезок синусоиды, абсолютно когерентный сам с собой. Таким образом, необходимо разделить на два и более пучков один поток света, который идет от источника, а затем наложить получившиеся друг на друга. В этом случае мы сможем наблюдать минимумы и максимумы такого явления, как интерференция света.

Наблюдение за наложением волн

Как уже говорилось выше, интерференция света - это очень широкое понятие, при котором результат сложения световых пучков по интенсивности не равен интенсивности отдельных пучков. В результате этого явления имеет место перераспределение энергии в пространстве - образуются те самые минимумы и максимумы. Именно поэтому интерференционная картина - это просто чередование темных и светлых полос. Если использовать белый свет, то полосы будут окрашены в самые разные цвета. Но когда в обычной жизни мы встречаем интерференцию света? Это происходит довольно часто. К ее проявлениям можно отнести масляные пятна на асфальте, мыльные пузыри с их радужными переливами, игру света на поверхности закаленного металла, рисунки на крылышках стрекозы. Это все интерференция света в тонких пленках. В действительности наблюдать этот эффект не так просто, как может показаться. Если горят две совершенно одинаковые лампы, то их интенсивности складываются. Но почему же нет эффекта интерференции? Ответ на этот вопрос заключается в отсутствии у такого наложения важнейшего условия - когерентности волн.

Бипризма Френеля

Для получения интерференционной картины возьмем источник, который является узкой освещенной щелью, установленной параллельно ребру самой бипризмы. Идущая от него волна будет раздваиваться благодаря преломлению в половинах бипризмы и доходить до экрана двумя различными путями, то есть иметь разность хода. На экране, в той его части, где и происходит перекрытие пучков света от половин бипризмы, появляются чередующиеся темные и светлые полосы. Разность хода ограничена по некоторым соображениям. В каждом акте излучения атом выпускает так называемый волновой цуг (системы электромагнитных волн), который распространяется в пространстве и времени, сохраняя свою синусоидальность. Длительность этого цуга ограничивается затуханием собственных колебаний частички (электрона) в атоме и столкновениям данного атома с другими. Если пропускать через бипризму белый свет, то можно увидеть цветную интерференцию, как это было и с тонкими пленками. Если же свет монохроматический (от дугового разряда в каком-либо газе), то интерференционная картинка будет представлять собой просто светлые и темные полосы. Это означает, что длины волн у разных цветов различны, то есть свет разного цвета и характеризуется разностью длин волн.

Получение наложенных волн

Идеальный источник света - это лазер (генератор квантов), который является по своей природе когерентным источником вынужденных излучений. Длина когерентного лазерного цуга может достигать тысяч километров. Именно благодаря генераторам квантов ученые создали целую область современной оптики, которую и назвали когерентной. Этот раздел физики является невероятно перспективным в плане технических и теоретических достижений.

Области применения эффекта

В широком смысле понятие «интерференция света» - это модуляция в пространстве потока энергии и его состояния излучения (поляризации) в области пересечения нескольких электромагнитных волн (двух и более). Но где используют такой эффект? Применение интерференции света возможно в самых различных областях технологий и промышленности. Например, это явление используют для того, чтобы осуществлять прецизионный контроль поверхностей обработанных изделий, а также механических и тепловых напряжений в деталях, измерять объемы различных объектов. Также интерференция света нашла применение в микроскопии, в спектроскопии инфракрасного и оптического излучения. Это явление лежит в основе современной трехмерной голографии, активной спектроскопии комбинационного рассеяния. В основном интерференцию, как видно из примеров, используют для высокоточных измерений и вычисления показателей преломления в разных средах.

Волновые свойства света проявляются в явлениях интерференции. Суть последних заключается в том, что при определенных условиях в области, освещаемой двумя источниками света, создается периодическое изменение освещенности в пространстве наблюдения.Если же один из источников погасить, то освещенность в той же области изменяется монотонно.

Пусть в пространстве распространяются две бегущие электромагнитные волны, электрические векторы которых параллельны:

Здесь r 1 и r 2 - расстояния от источников волн до рассматриваемой точки пространства, ω 1 - угловые частоты колебаний, - волновые числа.

Предполагая, что область наблюдения далека от источников и невелика по размерам, мы можем пренебречь изменением амплитуды с расстоянием. Тогда суммарное колебание в некоторой точке опишется выражением:

где знаком Δ обозначена разность соответствующих величин.

Так как почти все приемники света реагируют на энергию и обладают значительной инерцией, то восприятие этих волн будет определяться средним по времени значением квадрата амплитуды:

(здесь мы учли, что средний квадрат косинуса равен 1/2). Но интенсивность излучения пропорциональна квадрату амплитуды, следовательно, в этом случае интенсивности просто складываются:

Это и наблюдается при освещении поля зрения независимыми источниками. Колебания (и источники) такого рода называются некогерентными (несогласованными). Совершенно иной результат получается, если источники удовлетворяют жестким (но осуществимым па практике) условиям:

а) частоты колебаний их строго равны;

б) разность начальных фаз постоянна в течение всего времени наблюдения (для простоты мы примем ее равной нулю).

Источники, удовлетворяющие указанным условиям, называются когерентными (согласованными); В этом случае вместо (3.1) получаем:

(3.2)

Таким образом, теперь интенсивность света существенно зависит от положения точки наблюдения: при

она максимальна (и превышает интенсивность двух таких же некогерентных источников вдвое); при

она обращается в нуль.

С классической точки зрения излучение света атомами вещества в простейшем случае можно представить следующим образом: каждый атом, будучи возбужден тем или Иным способом, излучает за время τ изл (10 -10 – 10 -8 с) «обрывок косинусоиды» (цуг волн); затем он пребывает в невозбужденном состоянии некоторое время τ, после чего снова возбуждается и создает новый цуг. Последующие «обрывки косинусоид» никак не связаны друг с другом; акты излучения отдельных атомов также совершенно независимы. Поэтому когерентность существует только в пределах каждого цуга, и «время когерентности» τ ког не может превышать времени излучения τ изл. Путь, проходимый волной за время когерентности, равный l КОГ -сτ КОГ, называют «длиной когерентности»; она всегда меньше длины цуга l ц =сτ изл.

Для обычных газовых источников света (не лазеров) длина когерентности обычно не превышает сантиметра. При средней частоте световых волн v=5x10 14 Гц в цуге укладывается большое число волн - порядка сотен тысяч; при этом свет довольно монохроматичен. Источники когерентного излучения (лазеры), в -которых акты излучения отдельных атомов связаны друг с другом, обладают громадным временем когерентности, достигающим 10 -5 -10 -3 с, и длиной когерентности порядка сотен метров. При этом, конечно,монохроматичность резко улучшается. В радиотехнических генераторах относительная монохроматичность излучения близка к лазерной и даже превышает ее на несколько порядков. Из-за большого периода колебаний время когерентности возрастает до десятков часов, а длина когерентности (из-за большой длины волны) достигает 10 10 км, т. е. размеров солнечной системы. Поэтому на радиочастотах можно в течение нескольких минут наблюдать интерференцию волн от двух независимых источников - простых генераторов электрических колебаний.

Итак, в обычной оптике источники некогерентны, и для получения когерентных излучений приходится пользоваться вторичными - зависимыми - источниками излучения; они создаются путем разделения волны первичного источника на две волны, проходящие различные пути и снова сходящиеся. Естественно, что время запаздывания одной волны относительно другой в точке наблюдения не должно превышать времени когерентности источника. Поэтому размеры области, где может наблюдаться интерференция, определяются разностью расстояний от точки наблюдения до источников и длиной когерентности последних.

  • 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
  • 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
  • Лекция № 4
  • 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
  • 4.2. Уравнение неразрывности.
  • 4.3. Уравнение Бернулли и выводы из него
  • Лекция №5
  • 5.1. Гармонические колебания.
  • 5.2. Сложение гармонических колебаний.
  • 5.3. Сложение перпендикулярных колебаний.
  • 5.4. Дифференциальное уравнение колебаний.
  • 5.5. Энергетические соотношения в колебательных процессах.
  • 5.6. Колебания математического и физического маятников
  • 5.7. Уравнение вынужденных колебаний. Резонанс
  • Лекция №6
  • 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
  • 6.2. Энергия волны
  • 6.3. Упругие волны в твердом теле
  • Лекция №7
  • 7.1. Основные положения мкт.
  • Агрегатные состояния вещества
  • 7.2. Опытные законы идеального газа
  • Закон Авогадро
  • 7.3. Уравнение состояния идеального газа
  • 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
  • 7.5. Закон Максвелла для распределения молекул по скоростям.
  • 7.6. Барометрическая формула. Распределение Больцмана
  • Лекция №8
  • 8.2. Столкновения молекул и явления переноса в идеальном газе
  • 8.3. Среднее число столкновений и среднее время свободного пробега молекул
  • 8.4.Средняя длина свободного пробега молекул
  • 8.5. Диффузия в газах
  • 8.6. Вязкость газов
  • 8.7. Теплопроводность газов
  • 8.8. Осмос. Осмотическое давление
  • Лекция №9
  • 9.1.Распределение энергии по степеням свободы молекул
  • 9.2. Внутренняя энергия
  • 9.3. Работа газа при его расширении
  • 9.4. Первое начало термодинамики
  • 9.5. Теплоемкость. Уравнение Майера
  • 9.6. Адиабатный процесс
  • 9.7. Политропический процесс
  • 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
  • 9.10. Второе начало термодинамики и его статистический смысл.
  • Лекция №10
  • 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
  • Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
  • 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
  • Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
  • 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
  • 10.4. Капиллярные явления
  • 10.5. Твёрдые тела
  • Дефекты в кристаллах
  • Тепловые свойства кристаллов
  • Жидкие кристаллы
  • Лекция №11
  • 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
  • 11.2. Закон Кулона
  • 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
  • 11.4. Электрический диполь
  • 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
  • 11.6. Работа сил электростатического поля по перемещению зарядов.
  • 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
  • 11.7. Связь между напряженностью электрического поля и потенциалом
  • 11.8. Типы диэлектриков. Поляризация диэлектриков.
  • 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - сме­щения, - напряженности и - поляризованности
  • 11.10. Проводники в электростатическом поле
  • 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
  • 11.12. Энергия заряженного проводника, системы проводников и конденсатора
  • Лекция №12
  • 12.1. Электрический ток. Сила и плотность тока.
  • 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
  • 12.4. Закон Ома для неоднородного участка цепи
  • 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
  • 12.6. Правила Кирхгофа
  • Лекция №13
  • 13.1. Классическая теория электропроводности металлов
  • 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
  • 13.3. Электрический ток в газах. Виды газового разряда.
  • Самостоятельный газовый разряд и его типы
  • Лекция №14
  • 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
  • 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
  • 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
  • 14.4. Магнитный поток. Теорема Гаусса
  • 14.5. Работа перемещения проводника и рамки с током в магнитном поле
  • 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
  • 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
  • 14.8. Закон полного тока для магнитного поля в веществе
  • 14.9. Виды магнетиков
  • Лекция 15
  • 15.1. Явление электромагнитной индукции.
  • 15.2. Явление самоиндукции
  • 15.3. Энергия магнитного поля
  • 15.4. Электромагнитная теория Максвелла.
  • 1) Первое уравнение Максвелла
  • 2) Ток смешения. Второе уравнение Максвелла
  • 3)Третье и четвертое уравнения Максвелла
  • 4)Полная система уравнений Максвелла в дифференциальной форме
  • 15.5. Переменный ток
  • Лекция № 16
  • 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
  • 16.2. Отражение и преломление света на сферической поверхности. Линзы.
  • 16.3. Основные фотометрические величины и их единицы
  • 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
  • 17.2. Способы получения интерференционных картин.
  • 17.3. Интерференция в тонких пленках.
  • 17.4. Просветление оптики
  • 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
  • 17.6. Дифракция Френеля от простейших преград.
  • 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
  • 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
  • 17.9. Поляризация света. Естественный и поляризованный свет.
  • 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
  • 17.11.Поляризация при двойном лучепреломлении.
  • 17.12. Вращение плоскости поляризации.
  • 17.13. Дисперсия света. Поглощение (абсорбция) света.
  • Лекция №18
  • 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
  • 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  • 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
  • Лекция №19
  • 19.2.Линейчатый спектр атома водорода.
  • 19.3. Постулаты Бора. Опыты Франка и Герца.
  • Лекция №20
  • 20.1.Атомное ядро.
  • 20.2.Ядерные силы.
  • 20.3.Энергия связи ядер. Дефект массы.
  • 20.4.Реакции деления ядер.
  • 2.5.Термоядерный синтез.
  • 20.6.Радиоактивность. Закон радиоактивного распада.
  • План-график самостоятельной работы
  • План-график проведения лабораторно-практических занятий
  • Перечень вопросов для подготовки к коллоквиуму Механика
  • Формулы
  • Определения
  • Вопросы к экзамену
  • Правила и образец оформления лабораторной работы
  • 17.2. Способы получения интерференционных картин.

    Существует ряд способов получения интерференционных картин: Метод Юнга, зеркала Френеля, бипризма Френеля и т.д. Рассмотрим подробно метод Юнга.

    Источником сета служит ярко освещенная щель S (рис.17.3), от которой световая волна падает на две узкие равноудаленные щели и, параллельные щелиS . Таким образом, щели играют роль когерентных источников. Интерференционная картина наблюдается на экране (Э ), расположенном на некотором расстоянии от щелей и. В такой постановке Юнг осуществил первое наблюдение интерференции.

    17.3. Интерференция в тонких пленках.

    Пластинка постоянной толщины. При падении световой волны на тонкую прозрачную пластинку (или пленку) происходит отражение от обеих поверхностей пластинки. В результате возникают две световые волны, которые при определенных условиях могут интерферировать.

    Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна (параллельный пучок света) (рис.17.4). В результате отражений от поверхностей пластинки, часть света возвращается в исходную среду.

    В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.

    Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S 1 и S 2 источника S , создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S . Этот опыт предъявляет менее жесткие требования к размерам источника S , чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами.

    Полосы равного наклона. Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 17.5).

    В этом случае оба луча, идущие от S к P , порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC :

    Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как
    ,
    (h – толщина пластинки, и– углы падения и преломления на верхней грани;
    ), то для разности хода получаем

    Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна:

    ,

    где– длина волны в вакууме.

    В соответствии с последней формулой светлые полосы расположены в местах, для которых
    , гдеm порядок интерференции . Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален.

    Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая.

    Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис.17.6). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя, дает, а луч 2, отражаясь от з2 и далее от, дает. Пластинкииодинаковы по размерам.ставится для компенсации разности хода второго луча. Лучиикогерентны и интерферируют.

    Полосы равной толщины (интерференция от клина). Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины . В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок . Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.

    Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).

    Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают (рис.17.7). Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).

    Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.

    Результат интерференции в точках и экрана определяется по известной формуле,подставляя в неё толщину пленки в месте падения луча (или). Свет обязательно должен быть параллельным (): если одновременно будут изменяться два параметраb и α, то устойчивой интерференционной картины не будет.

    Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис.17.8). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины .

    Кольца Ньютона. На рис.17.9 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.

    Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

    Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла называют кольцами Ньютона .

    Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщина h воздушного зазора связана с расстоянием r до точки касания:

    .

    Здесь использовано условие
    . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине
    , поэтому для радиусаm -го темного кольца получаем

    (m = 0, 1, 2, …).

    Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

    Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины рассеянным светом , в котором содержатся лучи разных направлений. Полосы равной толщины наблюдаются при освещении пластинки переменной толщины (клина) параллельным пучком света . Полосы равной толщины локализованы вблизи пластинки.

    "