Балансировка якоря электродвигателя в домашних условиях. Устройство и ремонт электрических машин - бандажирование и балансировка роторов и якорей

Часто после длительного использования у электродвигателей появляются посторонние шумы или повышенная вибрация. Эти признаки свидетельствуют о дисбалансе. В исправном состоянии ось инерции ротора должна совпадать с осью вращения, однако во время длительной эксплуатации и после возможных перегрузок эти оси могут смещаться. Именно поэтому необходимо проводить регулярную диагностику электродвигателей. ООО «ВЭР» предоставляет услуги не только по диагностике, но и по балансировке электродвигателей любых видов по приемлемым ценам и в кратчайшие сроки.

Одна из услуг ООО «ВЭР» – балансировка якоря электродвигателей. Она производится с помощью специального оборудования, позволяющего вычислить мельчайшие отклонения во вращении ротора. После небольшой корректировки двигатели вновь готовы к дальнейшей эксплуатации. Давайте разберёмся, что такое балансировка роторов якорей электрических двигателей и для чего она проводится.

Для чего нужна балансировка электродвигателя

Каждый двигатель оснащён быстро вращающимся ротором (якорем). Скорость вращения может достигать тысяч и десятков тысяч оборотов в минуту. От двигателя требуется не только высокая скорость, но и равномерность вращения – без отклонений, даже самых минимальных. Для этого он подвергается балансировке ещё на заводе-изготовителе. В процессе эксплуатации ротор выдерживает большие нагрузки, из-за чего его балансировка нарушается. Последствия могут быть самыми разными:

  • быстрый износ вращающихся и неподвижных частей электродвигателя – нарушение баланса начинает его разрушать, причём наблюдается всё большее отклонение от нормы;
  • возникают вибрации – они нарушают работу электродвигателя и подключенного к нему оборудования. В случае с мощными двигателями, устанавливаемыми на бетонные платформы, начинается неконтролируемое разрушение последних. Больше всего от вибраций страдают подшипники, что приводит к ещё более разрушительным последствиям – вплоть до полного выхода двигателя и оборудования/электроустановки из строя;
  • повышается нагрузка на двигатель и его электрические части – износ становится стремительным, а эксплуатация – опасной.

Дисбаланс якоря – это состояние, когда ось вращения не совпадает с центральной осью инерции. Такое состояние называется неуравновешенным, двигатель нуждается в тонкой настройке. Их балансировка осуществляется силами специалистов ООО «ВЭР».

Причины дисбаланса якорей

Существуют несколько причин отсутствия балансировки якорей:

  • наличие скрытых дефектов ротора – проявляются места неуравновешенной массы, что приводит к неравномерному вращению;
  • неравномерность расположения обмоток – проявляется в самом начале эксплуатации электродвигателей, но может проявиться и в дальнейшем;
  • нарушение центра масс из-за неправильной формы каких-либо деталей – это может быть заводской или приобретённый дефект.

Также существуют и многие другие причины – например, центр масс может потеряться из-за теплового расширения отдельных деталей двигателя в силу высокой нагрузки.

Как производится балансировка электродвигателей

Балансировка роторов якорей производится двумя способами – статическим и динамическим. Статическая балансировка производится на остановленном двигателей с помощью несложного оборудования или специальных весов. Определив расположение центра масс, специалисту остаётся вычислить необходимую для корректировки массу и определить место для её установки. Чем опытнее специалист, тем выше точность такой балансировки. Все работы, в том числе измерительные, производятся в состоянии покоя. После завершения процедуры производятся повторные измерения и контрольный запуск двигателя.

Динамическая балансировка якоря производится на специальном оборудовании при запущенном двигателе или раскрученном вале. Здесь используется так называемый балансировочный станок. Он определяет неуравновешенность во вращении, позволяя выполнить балансировку с максимальной точностью.

Динамическая балансировка роторов электродвигателей позволяет выявить статочную неуравновешенность, оставшуюся после статической балансировки. Именно поэтому последняя используется только при грубых нарушениях. Например, этот метод применяется при работе с маломощными электродвигателями с частотой вращения не выше 1000 об/мин. Здесь небольшой дисбаланс практически незаметен. Если двигатель вращается с частотой свыше 1000 об/мин, задействуется динамическая балансировка – более точная. Она позволяет выявить даже самый ничтожный дисбаланс.

Ротор электродвигателя представляет собой сложную конструкцию с множеством элементов, каждый из которых наделен своими нормативными показателями. В идеальном состоянии ось инерции ротора должна совпадать с осью вращения, однако под воздействием внешних факторов длительное использование двигателей может приводить к их разбалансировке. В таких условиях своевременная диагностика и устранение неполадок может стать единственным выходом для продления срока службы электродвигателя.

Балансировка якоря и ротора электродвигателя в Волгограде, Санкт-Петербурге и Волжском

ООО «ВЭР» производит балансировку якоря и ротора электродвигателей двумя способами в зависимости от угловой скорости. Так для электродвигателей с тихим ходом специалисты применяют балансировку в статическом режиме , а для быстроходных электродвигателей – балансировку в динамическом режиме . Балансировка в статическом режиме – это сложная и трудоемкая процедура, требующая временных затрат, большого количества вычислений и измерений. Именно поэтому мы рекомендуем при возникновении проблем обращаться к профессионалам нашей компании, которые с высокой точностью проведут все необходимые замеры и выполнят качественную балансировку вашего оборудования.

Воспользоваться услугами по вы сможете в ООО «ВЭР». В своей работе мы используем современное высокоточное оборудование , позволяющее вычислить малейшие следы дисбаланса и устранить их с высокой точностью. Сотрудники, работающие на оборудовании, обладают большим опытом работы, благодаря чему они способны оперативно найти и устранить неуравновешенность центра масс в электродвигателях любых марок – в том числе особо мощных и высокооборотистых.

7-6. БАЛАНСИРОВКА РОТОРОВ

Если вращающаяся часть машины не уравновешена, то при вращении ее появляется сотрясение (вибрация) всей машины. Вибрация вызывает разрушение подшипников, фундамента и самой машины. Для устранения

вибрации вращающиеся части должны быть отбалансированы. Различают балансировку статическую, выполняемую на призмах, и динамическую при вращении балансируемой детали. Если, например, ротор, изображенный на рис. 7-9,а, имеет более тяжелую половину //, то при вращении центробежная сила этой половины будет больше центробежной силы половины /. Она будет создавать давление на подшипники, переменное по на-

Рис. 7-9. Смещение центра тяжести ротора,

правлению, и вызывать сотрясение машины. Такай небаланс устраняется статической балансировкой на призмах. Ротор шейками вала ставится «а призмы, точно выверенные по горизонтали, и при этом, естественно, поворачивается тяжелой стороной вниз. На верхнюю сторону в специальные канавки, которые предусматриваются в нажимных шайбах и обмоткодержателях, подбирают и ставят свинцовые грузы такого веса, чтобы ротор оставался.на призмах в безразличном положении. После балансировки свинцовые грузы обычно заменяют на стальные одинакового веса, которые надежно приваривают или привертывают к ротору. Однако для длинных якорей и роторов статической балансировки недостаточно. Даже если отбалансировать обе половины ротора так, что веса обеих половин будут одинаковыми (рис. 7-9,6), то может оказаться, что центры тяжести сдвинуты по оси машины. В этом случае центробежные силы двух половин не могут уравновесить друг друга, а создают пару сил, вызывающую переменное давление на подшипники. Для устранения действия этой пары сил должны быть размещены специальные грузы (рис. 7-9,6) с тем, чтобы создать пару сил, действующую обратно паре сил.небаланса. Найти величину и положение этих

грузов можно путем балансировки вращающегося ротора (динамическая балансировка).

Перед проведением динамической балансировки следует проверить рабочие поверхности ротора (шейки и концы вала, коллектор, контактные кольца, сталь ротора) на отсутствие биения и при необходимости устранить его. Если для установки ротора на станок приме-

Рис. 7-10. Схема динамической балансировки,

«лютея какие-либо оправки, то они должны быть проверены на отсутствие биения и небаланса.

Па роторе не должно быть плохо закрепленных деталей, так как в этом случае балансировка невозможна. Для проведения динамической балансировки ротор укладывают в подшипники специального станка. Эти подшипники укреплены на плоских пружинах и по желанию могут либо быть закреплены неподвижно специальным тормозом, либо совершать свободные колебания вместе с пружиной (рис. 7-10,а). Ротор при помощи электродвигателя и муфты приводится во вращение. Появляющаяся при этом сила небаланса, которая направлена радиально, будет раскачивать подшипники станка. Для проведения балансировки один подшипник закрепляется тормозом неподвижно, второй освобождается и под влиянием небаланса колеблется. На какой-либо точно обработанной поверхности ротора, концентричной с осью вала, делают цветным карандашом отметку, показывающую точку наибольшего отклонения ротора (рис. 7-10,6).

Однако по этой точке еще нельзя точно определить


место, где находится небаланс ротора, так как наибольшее отклонение ротора получается после прохождения силы небаланса через горизонтальную плоскость, в которой находится отметчик (карандаш).

Угол сдвига (т. е. угол между точкой небаланса и отметкой) зависит от отношения скорости вращения к собственной частоте колебания ротора на опорах, т. е. к частоте колебаний, которые будут иметь место, если толкнуть невращающийся ротор, установленный на опорах станка.

При совпадении числа оборотов в секунду с собственной частотой имеет место резонанс. Колебания приобретают наибольший размах и, следовательно, станок становится наиболее чувствительным. Поэтому стремятся вести балансировку при резонансном числе оборотов. При этом указанный выше угловой сдвиг становится близким к 90° и, следовательно, место небаланса может быть найдено отсчетом от середины отметки-90° вперед по вращению (а место установки груза 90° против вращения). Если же почему-либо работать на резонансной скорости нельзя, то для определения места положения небаланса повторяют описанный опыт при обратном направлении вращения при том же числе оборотов в ми-иуту. Отметку делают карандашом другого цвета. Тогда середина между двумя отметками определяет место, где находится небаланс. В диаметрально противоположной точке устанавливают балансный груз. Величину этого груза определяют подбором до исчезновения вибрации подшипника. Вместо укрепления груза балансировка может быть получена путем высверливания противополож-«ой части якоря. После того как отбалансирована одна сторона ротора, подшипник этой стороны закрепляют неподвижно, а подшипник второй стороны освобождают и аналогичными приемами балансируют вторую сторону. После этого проверяют балансировку первой стороны и в случае необходимости корректируют и т. д.

В настоящее время существует большое число станков для динамической балансировки, на которых местоположения и величины груза определяются достаточно удобно и точно. Методы работы на этих станках даются в инструкциях заводов-изготовителей.

При отсутствии специальных станков динамическая балансировка может производиться на прочных дере-

вянных брусьях, уложенных на резиновые прокладки. На эти брусья кладут либо непосредственно шейки вала балансируемого ротора, либо вкладыши подшипников, в которых лежат шейки вала. При помощи клиньев брусья могут закрепляться неподвижно. Ротор разворачивается ременной передачей, охватывающей непосредственно сталь, затем клин вынимается, и подшипник получает возможность колебаться на резиновых подкладках. Процесс балансировки аналогичен описанному выше.

В условиях ремонта, в особенно для крупных машин, целесообразна балансировка в собранном виде [Л. 8]; для этой цели машину запускают вхолостую и измеряют вибрацию подшипников Это измерение следует производить при помощи виброметров (например, типов ВР-1, ВР-3, 2ВК, ЗВК).

При отсутствии виброметров вибрацию можно измерить индикатором, укрепленным на массивной тяжелой рукоятке Прижимая щуп такого индикатора к колеблющейся детали, можно по ширине размытого очертания стрелки определить величину размаха колебания

Следует иметь в виду, что показания такого виброметра сильно зависят от скорости вращения и что поэтому его показания можно яопользавать главным образом как сравнительные при одном и том же числе оборотов машины, что достаточно для целей балансировки.

Измеряя вибрацию подшипника в различных направлениях, находят точку наибольшей вибрации. По этой точке и ведется балансировка.

Для нахождения величины и местоположения балансировочного груза на ротор в произвольную точку помещают пробный груз и снова измеряют вибрацию. Очевидно, что, изучив, как влияет на вибрацию пробный груз, величина и местоположение которого известны, можно определить и величину небаланса и место его положения. Если можно измерить, как в результате установки пробного груза именяется величина и фаза вибрации (см. ниже), то можно обойтись двумя измерениями: до и после установки пробного груза. Если же определить изменение фазы нельзя, то необходимо сделать большее (3-4) число измерений величины вибрации. Пробный груз помещается при этом вначале в какую-либо произвольную точку, а затем поочередно в точки, отстоящие на Уз окружности вправо и влево от первой.

Для определения изменения фазы можно прибегнуть к отметкам на валу, как это описывалось выше. Вал при этом закрашивается мелом и острой чертилкой осторож-«0 наносятся (по возможности короткие) метки, середи-!на которых соответствует наибольшему отклонению вала в плоскости, где расположен отметчик (чертилка). Угловое расстояние (угол а) между метками при отсутствии пробного груза и при его наличии является мерой сдвига фазы колебания, обусловленного внесением пробного груза.

Более точно сдвиг фазы определяется стробоскопическим способом. В этом случае на торец вала наносится метка, освещаемая вспышками газосветной лампы. Эта лампа управляется специальным контактом, имеющимся з виброметре, который замыкается 1 раз за оборот вала в момент, близкий к наибольшему размаху колебания.

Метка на вращающемся валу кажется при этом неподвижной (поскольку лампа освещает ее каждый раз в тот момент, когда она, пройдя один оборот, окажется точно в том же положении), и против нее «а неподвижной части машины также может быть нанесена метка.

После внесения пробного груза отметка на валу сдвигается относительно отметки на неподвижной части. Нанеся вторую отметку на неподвижной части, соответствующую новому положению отметки на валу, и измерив угловое расстояние (угол а) между ними, определяем угол сдвига фазы колебания.

Возможность определения фазы стробоскопическим способом предусмотрена в специальных балансировочных виброскопах системы Колесника 2ВК, ЗВК, выпускаемых Ленинградским инструментальным заводом, и в виброскопах типа БИП Киевского электромеханического завода

Графический метод определения местоположения груза виден из рис. 7-11,а. Здесь отрезок-„вектор" оа в определенном масштабе равен размаху колебания подшипника до внесения пробного груза. Пробный груз Р тр ставится в плоскости, сдвинутой от отметки, полученной при этом на валу на какой-либо угол, например на 90°,-линия О В. Измерив теперь размах колебания подшипника (при том же числе оборотов в минуту), отметив новую метку и определив угловой сдвиг между отметками - а, отложим теперь в том же масштабе под углом « к вектору оа вектор ob,

Очевидно, что если вектор оа изображает вибрацию от небаланса, вектор ob вибрацию от совместного дей-ствия пробного груза и небаланса, то разностный век. тор аЪ определяет величину и фазу вибрации, вызванную пробным грузом.

Рис 7-11 Определение величины и местоположения балансировочных грузов

Для того чтобы уничтожить вибрацию от небаланса надо повернуть вектор ab на угол § и увеличить его так, чтобы он был равен вектору оа и направлен против него. Очевидно, что для этого пробный груз Р гр должен быть сдвинут из точки В в точку С (на угол S) и увеличен в отношении отрезков ^-. Балансировочный груз

i должен быть, следовательно, равен:

Аналогичным способом балансируется вторая сторона машины, но определенный для этой стороны груз Q"z распределяется на два груза Q 2 и Q H . Делается это с той целью, чтобы не нарушить балансировку первой стороны.

Груз <2г помещается в точку, определенную описанным выше способом для второй стороны, а груз СЬ Д переносится на первую сторону и закрепляется в точке диаметрально противоположной Q 2 (рис.-7-11,6). Величины грузов Q 2 я Qia определяются из выражений:

где размеры т, п, a, b, RiR^R 3 видны из рис. 7-111,б. Несмотря на такое распределение груза Q"2, приходится обычно еще раз производить (корректировочную) балансировку.первой стороны после того, как установлены грузы Q 2 и СЬ Д.

Наиболее просто качество балансировки может быть проверено путем установки машины на гладкостроганую горизонтальную плиту. При удовлетворительной балансировке машина, работающая с номинальным числом оборотов, не должна иметь качаний и перемещений по плите. Проверка производится при холостом ходе в режиме двигателя.

Если вы определили, что в вашем перфораторе вышел из строя ротор, а средств на новый у вас нет, или есть желание воскресить деталь своими руками, то эта инструкция для вас.

Устройство перфоратора Макита настолько простое, что ремонт Makita 2450, 2470 не вызывает особых затруднений. Главное, придерживаться наших советов.

Кстати, ремонт перфоратора своими руками может выполнить практически каждый пользователь, имеющий начальные навыки слесаря.

С чего начать?

Поскольку устройство перфоратора несложное, то ремонт перфоратора makita надо начинать с его разборки. Разборку перфоратора лучше всего выполнять по уже проверенному порядку.

Алгоритм разборки перфоратора:

  1. Снимаете заднюю крышку на ручке.
  2. Извлекаете электрические угольные щетки.
  3. Отсоединяете корпус механического блока и корпус статора.
  4. От механического блока отсоединяете ротор.
  5. Из корпуса статора извлекаете статор.

Запомните, корпус статора зеленого цвета, корпус механического блока с ротором черного цвета.

Отсоединив ротор от механического блока, переходим к определению характера неисправности. Ротор Makita HR2450 поз.54; артикул 515668-4.

Как найти короткое замыкание в роторе

Поскольку вы производите самостоятельный ремонт перфораторов, вам необходима
электрическая схема перфоратора Makita 2450, 2470.

В перфораторах Макита 2470, 2450 применяются коллекторные электродвигатели переменно тока.

Определение целостности коллекторного двигателя начинается с общего визуального осмотра. У неисправного ротора поз.54 видны следы подгорелой обмотки, царапины на коллекторе, следы гари на ламелях коллектора. Короткое замыкание можно определить только у ротора, в цепи которого отсутствует обрыв.

Для определения короткого замыкания(КЗ) лучше всего воспользоваться специальным прибором ИК-32.

Проверка якоря на КЗ при помощи самодельного индикатора

Убедившись, с помощью указанного прибора или прибора самодельного, в том, что у ротора между витками короткое замыкание, приступайте к его разборке.


Перед разборкой обязательно зафиксируйте направление намотки. Это делается очень просто. Взглянув в торец ротора со стороны коллектора, вы увидите направление намотки. Направлений намотки бывает два: по часовой и против часовой стрелки. Зафиксируйте и запишите, эти данные вам обязательно понадобятся при самостоятельной намотке. У ротора перфоратора Makita направление намотки по часовой стрелке, правое.

Порядок разборки, ремонта, сборки ротора перфоратора

Вот последовательность ремонта ротора с коротким замыканием обмоток:

  1. Обрезка лобовой части обмоток.
  2. Снятие коллектора и лобовых частей и измерение диаметра снимаемого провода.
  3. Удаление и чистка изоляции пазов с подсчетом количества витков по срезам.
  4. Подборка нового коллектора.
  5. Установка нового коллектора.
  6. Изготовление заготовок из изоляционного материала.
  7. Установка гильз в пазы.
  8. Намотка якоря.
  9. Распайка выводов.
  10. Процесс термоусадки.
  11. Бронирование оболочки.
  12. Пропитка оболочки.
  13. Пропитка коллектора
  14. Фрезерование пазов ламелей коллектора
  15. Балансировка
  16. Зачистка и шлифовка ротора.

Теперь рассмотрим все по порядку.

Этап I

На первом этапе с якоря надо снять коллектор. Коллектор снимается после расточки или распиловки лобовых частей обмотки.


Если вы производите самостоятельный ремонт перфоратора, то распилить лобовые части обмотки можно при помощи ножовки по металлу. Зажав ротор в тисках через алюминиевые прокладки, распилите по кругу лобовые части обмотки, как показано на фото.

Этап II

Для освобождения коллектора, последний надо зажать газовым ключом за ламели и провернуть вместе с обрезанной лобовой частью обмотки, проворачивая ключ в разные стороны.


Ротор при этом зажмите в тиски через прокладки из мягкого металла.


Аналогично снимаете и вторую лобную часть, используя газовый ключ.

Всегда контролируйте усилие фиксации ротора в тисках, постоянно подтягивая зажим.

Этап III

Когда вы снимите коллектор и боковины обмотки, переходите к удалению из пазов остатков проволоки, следов изоляции. Лучше всего для этого использовать молоток и алюминиевое или медное зубило. Изоляция должна быть удалена полностью, а поверхность канавок зачищена наждачкой.


Но перед тем, как удалить следы обмотки из паза, постарайтесь посчитать количество витков, уложенных в нескольких пазах. При помощи микрометра замерьте диаметр используемого провода. Обязательно проконтролируйте, насколько процентов заполнены пазы ротора проводом. При малом заполнении можно использовать при новой намотке провод большего диаметра.


Кстати, зачищать изоляцию можно, обернув наждачной бумагой кусок деревяшки нужного профиля.

Подберите новый коллектор нужного диаметра и конструкции. Установку нового коллектора лучше всего выполнять на деревянном бруске, установив на него вертикально вал ротора.

Засунув коллектор на ротор, мягкими ударами молотка через медную наставку запрессовать коллектор на старое место.


Подошла очередь к установке гильз изоляции. Для изготовления гильз изоляции используйте электрокартон, синтофлекс, изофлекс, лакоткань. Короче, то, что легче всего приобрести.


Теперь самое сложное и ответственное.

Как намотать ротор своими руками.

Намотка ротора представляет собой трудоемкий и сложный процесс и требует усидчивости и терпения.

Вариантов намотки два:

  • Самостоятельно вручную без приспособлений намотки;
  • С применением простейших приспособлений.

Вариант I

По первому варианту, надо брать ротор в левую руку, а заготовленный провод нужного диаметра и нужной длины с небольшим запасом в правую и наматывать, постоянно контролируя количество витков. Вращение намотки от себя по часовой стрелке.

Порядок намотки простой. Закрепите начало провода за подшипник, проденьте в паз ламели и начинайте намотку в пазу ротора напротив паза ламели.

Вариант II

Для облегчения процесса намотки можно собрать простое приспособление. Приспособление целесообразно собирать при намотке якорей более одного.

Вот видео простого приспособления для намотки роторов коллекторного двигателя.


Но начинать намотку надо с подготовки данных.

В перечень данных должны входить:

  1. Длина ротора=153 мм.
  2. Длина коллектора=45 мм.
  3. Диаметр ротора=31,5 мм.
  4. Диаметр коллектора=21,5 мм.
  5. Диаметр провода.
  6. Количество пазов= 12.
  7. Шаг катушки =5.
  8. Количество ламелей на коллекторе=24.
  9. Направление намотки катушек ротора=правое.
  10. Процент заполнения пазов проводом=89.

Данные длинны, диаметра, количество пазов и количество ламелей вы сможете получить во время разборки ротора.

Диаметр проволоки измеряйте микрометром, когда достанете обмотку из пазов ротора.

Все данные вам надо собрать во время разборки ротора.


Алгоритм перемотки ротора

Порядок намотки любого ротора зависит от количества пазов в роторе, количества ламелей коллектора. Направление намотки вы установили перед разборкой и зарисовали.

На коллекторе выберите ламель отсчета. Это будет начало намотки. Обозначьте начальную ламель точкой при помощи лака для ногтей.


При разборке ротора мы установили, что у ротора пазов 12, а у коллектора 24 ламели.

А еще мы установили, что направление намотки по часовой стрелке, если смотреть со стороны коллектора.

Установив в пазы изоляционные гильзы из электрокартона или его аналога, припаяв конец обмоточного провода к ламели №1, начинаем намотку.

Провод укладывается в паз 1 напротив, и возвращается через шестой паз(1-6), и так до нужного количества витков с шагом z=5. Середина обмотки припаивается к ламели №2 по часовой стрелке. В эту же секцию наматывается такое же количество витков, а конец провода припаивается к ламели №3. Одна катушка намотана.

Начало новой катушки производится с ламели №3, середина распаивается на ламели №4, намотка в те же пазы(2-7), а конец на ламели №5. И так до того состояния, когда последняя катушка не закончится на ламели №1. Цикл замкнулся.


Пропаяв концы обмоток к ламелям коллектора, переходим к бронированию ротора.

Процесс бронирования оболочки ротора

Бронирование ротора производится для закрепления обмоток, ламелей и обеспечения сохранности ротор и его частей при работе на высоких оборотах.


Бронированием называется технологический процесс закрепления катушек ротора при помощи монтажной нити.

Процесс пропитки катушек ротора

Пропитку ротора следует выполнять с подключением к сети переменного тока. Это делается при помощи ЛАТРа. Но лучше такую процедуру делать с использованием трансформатора, на обмотку которого подается переменное напряжение через ЛАТР.

Фото пропитки с ЛАТРом

Задача состоит в том, что при подаче переменно напряжения витки намотанных катушек вибрируют, нагреваются. А это способствует лучшему прониканию изоляции внутрь витков.


Разводится клей в теплом состоянии согласно инструкции. Наносится эпоксидный клей на разогретую обмотку ротора при помощи деревянной лопатки.

Пропитка ротора перфоратора Makita 2470 в домашних условиях

После тщательной пропитки дайте ротору остыть. В процессе остывания пропитка затвердеет и станет сплошным монолитом. Вам останется удалить ее потеки.

Процесс зачистки коллектора от излишков пропитки

Как бы вы тщательно и аккуратно не наносили пропитку, ее частицы попадают на ламели коллектора, затекают в пазы.

На следующем этапе и надо все пазы и ламели тщательно зачистить, заполировать.

Пазы можно зачищать куском ножовочного полотна, заточенным как для резки оргстекла. А зачистку ламелей можно производить мелкой наждачной бумагой, зажав ротор в патрон электродрели.

Сначала зачищается поверхность ламелей, затем фрезеруются пазы коллектора.


Переходим к балансировке якоря.

Процесс балансировки якоря

В обязательном порядке балансировка якорей производится для высокооборотистого инструмента. Перфоратор Макита таковым не является, но проверить балансировку не лишне.

Правильно отбалансированный ротор значительно увеличит время работы подшипников, уменьшит вибрацию инструмента, снизит шум при работе.Балансировку выполнят на ножах, двух направляющих выставленных, в горизонт при помощи уровня. Ножи устанавливаются на ширину, позволяющую уложить собранный ротор на вал. Ротор должен лежать строго горизонтально.

Большинство станков ремонтных заводов выполнены по принципу измерения величины вектора дисбаланса по максимальному отклонению опор на резонансных частотах вращения. Этим измеряется величина вектора. Направление вектора фиксируется следящей системой по углу поворота проверяемого тела вращения. Показатели суммируются в измерительном устройстве, по взаимной реакции катушек прибора, по принципу электродинамического ваттметра.

Первоначально замеряется существующий дисбаланс. Его коррекция заключается в установке балансировочных грузов предусмотренных чертежом изделия в направлении прямо противоположном измеренному вектору. Либо в небольшом снятии металла в направлении строго соответствующему измеренному вектору.

Грузы в зависимости от конструкции узла закрепляются временно или постоянно. Производится повторный замер вектора и корректировка установленных грузов, либо их, предусмотренное конструкцией, окончательное закрепление, если величина остаточного дисбаланса соответствует допускаемой

Серийно выпущенные станки для динамической балансировки

Весьма широко применяются станки производства Минского станкостроительного завода типа 9717, 9718, 9719. Это оборудование имеет значительные габариты и требует для установки железобетонных фундаментов большого объема. На них осуществляется балансировка деталей и сборочных единиц от 0,5 до 5.0 тонн. Это якоря электрических машин и колесные пары. С середины 80-х годов была изменена конструкция фланцев якорей генераторов. Внешняя поверхность гнезда под установку кольца для центровки выполнена в виде удлиненного бурта цилиндрической формы, которая может непосредственно служить базовой поверхностью при динамической балансировке якоря. Это позволило отказаться от установки дополнительных втулок, уменьшить трудоемкость операции и увеличить ее точность.

Рис.20 Балансировка якоря на станке 9719

Новое поколение станков

В последнее время на заводах появилось новое поколение балансировочных станков предлагаемых сегодня рынком. В частности это станки фирмы «ДИАМЕХ». Особенностью станков является то, что замер дисбаланса производится не за счет максимального отклонения подвижных подшипниковых опор, а за счет реакции жестко закрепленных опор. При этом сама реакция измеряется как величина напряжений тензометрическим способом при помощи встроенных датчиков. Все результаты суммируются и обрабатываются на встроенном в станок компьютере с выводом информации на дисплей.



Данная конструкция станка не требует фундаментов для своего монтажа. Установка станка осуществляется непосредственно на поверхности полов. Габариты этих станков незначительно превышают габариты изделия подвергаемого балансировке.

Рис.21 Динамическая балансировка на станке ВМ3000 фирмы ДИАМЕХ

Весьма характерной деталью для станков нового поколения является отсутствие фундамента и передача детали вращения ременным приводом.

Страница 13 из 14

Бандажирование.

При вращении роторов и якорей электрических машин возникают центробежные силы, стремящиеся вытолкнуть обмотку из пазов и отогнуть ее лобовые части. Чтобы противодействовать центробежным силам и удержать обмотку в пазах, используют расклиновку и бандажирование обмоток роторов и якорей.
Применение способа крепления обмоток (клиньями или бандажами) зависит от формы пазов ротора или якоря. При полуоткрытой и полузакрытой формах пазов используют только клинья, а при открытой - бандажи или клинья. Пазовые части обмоток в сердечниках якорей и роторов закрепляют при помощи клиньев или бандажей из стальной бандажной проволоки либо стеклоленты, а также одновременно клиньями и бандажами; лобовые части обмоток роторов и якорей - бандажами. Надежное крепление обмоток имеет важное значение, поскольку необходимо для противодействия не только центробежным силам, но и динамическим усилиям, воздействию которых подвергаются обмотки при редких изменениях в них тока. Для бандажирования роторов применяют стальную луженую проволоку диаметром 0,8 - 2 мм, обладающую большим сопротивлением на разрыв.
Перед намоткой бандажей лобовые части обмотки осаживают ударами молотка через деревянную прокладку, чтобы они ровно располагались по окружности. При бандажировании ротора пространство под бандажами предварительно покрывают полосками электрокартона, чтобы создать изоляционную прокладку между сердечником ротора и бандажом, выступающую на 1 - 2 мм по обеим сторонам бандажа. Весь бандаж наматывают одним куском проволоки, без паек. На лобовых" частях обмотки во избежание их вспучивания накладывают витки проволоки от середины ротора к его концам. При наличии у ротора специальных канавок проволоки бандажа и замки не должны выступать над канавками, а при отсутствии канавок толщина и расположение бандажей должны быть такими, какими они были до ремонта.
Скобки, устанавливаемые на роторе, следует размещать над зубцами, а не над пазами, при этом ширина каждой из них должна быть меньше ширины верхней части зубца. Скобки на бандажах расставляют равномерно по окружности роторов с расстоянием между ними не более 160 мм.
Расстояние между двумя соседними бандажами должно быть 200-260 мм. Начало и конец бандажной проволоки заделывают двумя замочными скобками шириной 10-15 мм, которые устанавливают на расстоянии 10 - 30 мм одна от Другой. Края скобок завертывают на витки бандажа и. запаивают припоем ПОС 40.
Полностью намотанные бандажи для увеличения прочности и предотвращения их разрушения центробежными усилиями, -создаваемыми массой обмотки при вращении ротора, пропаивают по всей поверхности припоем ПОС 30 или ПОС 40. Пайку бандажей производят электродуговым паяльником с медным стержнем диаметром. 30 - 50 мм, присоединяемым к сварочному трансформатору.

В ремонтной практике нередко проволочные бандажи заменяют выполненными стеклолентами из однонаправленного (в продольном направлении) стеклянного волокна, пропитанного термореактивными лаками. Для наматывания бандажей из стеклоленты применяют то же оборудование, что и для бандажирования стальной проволокой, но дополненное приспособлениями в. виде натяжных роликов и укладчиков ленты.
В отличие от бандажирования стальной проволокой ротор до наматывания на него бандажей из стеклоленты прогревают до 100 °С. Такой прогрев необходим потому, что при наложении бандажа на холодный ротор остаточное напряжение в бандаже при его запекании снижается больше, чем при бандажировании нагретого.
Сечение бандажа из стеклоленты должно не менее чем в 2 раза превосходить сечение соответствующего бандажа из проволоки. Крепление последнего витка стеклоленты с нижележащим слоем происходит в процессе сушки обмотки при спекании термореактивного лака, которым пропитана стеклолента. При бандажировании обмоток роторов стекло- лентой не применяют замки, скобки и подбандажную изоляцию что является преимуществом этого способа.

Балансировка.

Отремонтированные роторы и якоря электрических машин подвергают статической, а при необходимости и динамической балансировке в сборе с вентиляторами и другими вращающимися частями. Балансировку производят на специальных станках для выявления неуравновешенности (дисбаланса) масс ротора или якоря, являющейся частой причиной возникновения вибрации при. работе машины.
Ротор, и якорь состоят из большого количества деталей и поэтому распределение масс в них не может быть строго равномерным. Причины неравномерного распределения масс - разная толщина или масса отдельных деталей, наличие в них раковин, неодинаковый, вылет лобовых частей обмотки и др. Каждая из деталей, входящих: в состав собранного ротора или якоря, может быть неуравновешенной вследствие смещения ее осей инерции от. оси вращения. В собранном роторе и якоре неуравновешенные массы, отдельных деталей в зависимости от их расположения могут суммироваться или взаимно компенсироваться. Роторы и якоря, у которых главная центральная ось инерции не совпадает с осью вращения, называют неуравновешенными.

Рис. 155.Способы статической балансировки роторов и якорей:
а - на призмах, б - на дисках, в - на специальных весах; 1 - груз, 2 - грузовая рамка, 3 - индикатор, 4 - рама, 5 - балансируемый ротор (якорь)
Неуравновешенность, как правило, складывается из суммы двух неуравновешенностей - статической и динамической.
Вращение статически и динамически неуравновешенного ротора и якоря вызывает вибрацию, способную разрушить подшипники и фундамент машины. Разрушающее воздействие неуравновешенных роторов и якорей устраняют путем их балансировки, которая заключается в определении размера и места неуравновешенной массы;
Неуравновешенность определяют статической или динамической балансировкой. Выбор способа балансировки зависит от требуемой точности уравновешивания, которой можно достигнуть на имеющемся оборудовании. При динамической балансировке получаются более высокие результаты компенсации неуравновешенности (меньшая остаточная неуравновешенность), чем при статической. Такой балансировкой можно устранить как/динамический, так и статический небаланс/ При необходимости устранения неуравновешенности (дисбаланса) на обоих торцах ротора или якоря должна производиться -только динамическая балансировка. Статическую балансировку выполняют при невращающемся роторе на призмах (рис., 155, я), дисках (рис. 155,5) или специальных весах (рис. 155, в). Такой балансировкой можно устранить только статическую неуравновешенность.
Для определения неуравновешенности ротор выводят из равновесия легким толчком; Неуравновешенный ротор (якорь) будет стремиться возвратиться в такое положение, при котором его тяжелая сторона окажется внизу. После остановки ротора отмечают мелом место, оказавшееся в верхнем положении. Прием повторяют несколько раз, чтобы проверить, останавливается ли ротор (якорь) всегда в этом, положении. Остановка ротора в одном и том же положении указывает на смещение центра тяжести.
В отведенное для балансировочных грузов место (чаще всего это внутренний диаметр обода нажимной шайбы) устанавливают пробные грузы, прикрепляя их с помощью замазки. После этого повторяют прием балансировки. Прибавляя или уменьшая массу грузов, добиваются остановки ротора в любом, произвольно взятом положении. Это означает, что ротор статически уравновешен, т. е. его центр тяжести совмещен с осью вращения. По окончании балансировки пробные грузы заменяют одним такого же сечения и массы, равной массе пробных грузов и замазки и уменьшенной на массу части электрода, которая пойдет на приварку постоянного груза. Неуравновешенность можно компенсировать высверливанием соответствующей части металла с тяжелой стороны ротора.
Более точной, чем на призмах и дисках является балансировка на специальных весах. Балансируемый ротор 5 устанавливают шейками вала на опоры рамы 4, которая может поворачиваться вокруг своей оси на некоторый угол пoboрачивая балансируемый ротор, добиваются наибольшего показания индикатора J, которое будет при условии расположения центра тяжести ротора, показанного на рисунке (в наибольшем удалении от оси поворота рамы). Добавлением к грузу 1 дополнительного груза-рамки 2 с делениями добиваются уравновешивания ротора, которое определяют по стрелке индикатора. В момент уравновешивания стрелка совмещается с нулевым делением.
Если повернуть ротор на 180, его центр тяжести приблизится к оси качания рамы на двойной эксцентриситет смещения центра тяжести ротора относительно его оси. Об этом моменте судят по наименьшему показанию индикатора. Ротор уравновешивают вторично передвижением грузовой рамки 2 по линейке со шкалой, отградуированной в граммах на сантиметр. О величине неуравновешенности судят по показаниям шкалы весов.
Статическая балансировка применяется для роторов, вращающихся с частотой, не превышающей 1000 об/мин. Статически уравновешенный ротор (якорь) может иметь динамическую неуравновешенность, поэтому роторы, вращающиеся с частотой выше 1000 об/мин, чаще всего подвергают динамической балансировке, при которой одновременно устраняются оба вида неуравновешенностей - статическая и динамическая.
Динамическую балансировку при ремонте электрических машин производят на балансировочном станке при пониженной (по сравнению с рабочей) частоте вращения или при вращении ротора (якоря) в собственных подшипниках при рабочей частоте вращения.
Для динамической балансировки наиболее удобен станок резонансного типа (рис. 156), состоящий из двух сварных стоек U опорных плит 9 и балансировочных головок.


Рис. 156. Станок резонансного типа для динамической балансировки роторов и якорей
Головки, состоящие из подшипников 8 и сегментов 69 могут быть закреплены неподвижно болтами 7 либо свободно качаться на сегментах. Балансируемый ротор 2 приводится во вращательное движение электродвигателем 5, муфта расцепления 4 служит для отсоединения вращающегося ротора от привода в момент балансировки.
Динамическая балансировка роторов состоит из двух операций: измерения первоначальной вибрации, дающей представление о размерах неуравновешенности масс ротора; нахождения точки размещения и определения массы уравновешивающего груза для одного из торцов ротора.
При первой операции головки станка закрепляют болтами 7. Ротор 2 при помощи электродвигателя 5 приводится во вращение, после чего привод отключают, расцепляя муфту, и освобождают одну из головок станка. Освобожденная головка под действием радиально направленной силы небаланса
раскачивается, что позволяет измерить стрелочным индикатором 3 амплитуду колебания головки. Такое же измерение производится для второй головки.
Вторая операция выполняется методом «обхода грузом». Разделив обе стороны ротора на шесть равных частей, закрепляют в каждой точке поочередно пробный груз, который должен быть несколько меньше предполагаемого небаланса. Затем описанным выше способом измеряют колебания головки для каждого положения груза. Необходимым местом размещения груза будет точка, у которой амплитуда колебаний минимальная. Массу груза подбирают опытным путем. -
Выполнив балансировку одной стороны ротора, уравновешивают таким же способом его другую сторону. Окончив балансировку обеих сторон ротора, окончательно закрепляют временно, установленный груз путем сварки либо винтами, при этом учитывают массу сварочного шва или винтов.
В качестве груза используют чаще всего куски полосовой стали. Крепление груза должно быть надежным поскольку недостаточно прочно закрепленный груз может в процессе работы машины оторваться от ротора и вызвать тяжелую аварию или несчастный случай.
Закрепив постоянный груз, ротор подвергают проверочной балансировке и при удовлетворительных результатах передают в сборочное отделение для сборки машины.