Обратный осмос: описание систем очистки, используемых в быту. Что такое обратный осмос? Обратный осмос: надежный фильтр Что значит обратный осмос

› Метод обратного осмоса: принцип

— Почему процесс носит таков странное название — обратный осмос? Что такое осмос и почему он обратный?

— Осмос (от греч. osmos — толчок, давление) — процесс самопроизвольного переноса растворителя (преимущественно воды) через полупроницаемую перегородку (мембрану), разделяющую два раствора с разной концентрацией. Например, чистую воду и раствор солей. Если мембрана пропускает только воду и не пропускает растворенные вещества, то вода будет проходить через мембрану в направлении к более концентрированному раствору до тех пор, пока не наступит равновесие и не выровняется давление (или концентрация) по обе стороны мембраны. Давление, при котором наступает это равновесие, называется осмотическим давлением раствора.

Это давление зависит от природы растворенного вещества и его концентрации. Осмос играет очень важную роль в жизни животных и растительных организмов. Именно осмотическое давление в живых клетках придает растительным и животным тканям прочность и упругость. Давление крови у человека составляет 7,7 атм, а в клетках пустынных растений — более 100 атм. Благодаря осмосу растения могут всасывать воду и растворенные в ней питательные вещества. Чувство жажды у человека также вызвано изменением осмотического давления крови. По отношению к осмотическому давлению крови жидкости подразделяются на три типа: гипотонические, изотонические и гипертонические.

— Изотонический раствор — это что-то из области медицины?

— Гипотонические растворы имеют более низкое осмотическое давление , чем в крови (в них меньше содержание солей); изотонические — одинаковое давление; гипертонические — более высокое давление. Вот почему в сталелитейных цехах рабочим дают пить солоноватую воду для предотвращения обезвоживания организма, а спортсмены пьют специальные изотонические напитки для утоления жажды.

Процесс обратного осмоса заключается в фильтрации растворов через полупроницаемую мембрану под давлением, превышающем осмотическое, при этом через мембрану проходит преимущественно вода, а растворенные вещества остаются в растворе. Движущей силой этого процесса является разность приложенного и осмотического давлений.

— Расскажите немного об истории технологии обратного осмоса?

— Обратный осмос относится к мембранным процессам разделения компонентов растворов и суспензий, так как разделение происходит на полупроницаемой перегородке, называемой мембраной. Это обстоятельство коренным образом отличает обратный осмос от других методов очистки . Применение мембран для отделения одних компонентов раствора от других имеет очень давнюю историю, восходящую еще к Аристотелю, впервые обнаружившему, что морская вода
опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения.

Но до середины 20-х годов уходящего века все эти процессы имели сугубо теоретический интерес, не выходя за пределы лабораторий. В 1927 году немецкая фирма «Сарториус» получила первые образцы искусственных мембран. После Второй мировой войны американцы, используя немецкие наработки, наладили производство ацетатцеллюлозных и нитроцеллюлозных мембран. Лишь в конце 50-х — начале 60-х годов с началом широкого производства синтетических полимерных материалов появились первые научные работы, которые легли в основу промышленного применения обратного осмоса.

Первые промышленные обратноосмотические системы появились только в начале 70-х годов. Поэтому обратный осмос — сравнительно молодая технология по сравнению с тем же ионным обменом или адсорбцией на активированных углях. Тем не менее, метод обратного осмоса стал одним из самых экономичных, универсальных и надежных способов очистки воды, который позволяет снизить концентрацию коллоидных и растворенных компонентов на 96 — 99% и практически на 100% избавиться от микроорганизмов и вирусов. Так как качество водопроводной воды во всем мире после повального применения ДДТ значительно ухудшилось, возникла проблема эффективной очистки воды в бытовых условиях от разнообразных загрязнителей. Поэтому на основе промышленных схем и имевшихся бытовых картриджных систем очистки были разработаны недорогие, надежные и эффективные бытовые обратноосмотические системы.

— Пожалуйста, расскажите об устройстве этих систем подробнее.

— По сравнению с промышленными бытовые обратноосмотические системы устроены намного проще и компактнее. Размеры позволяют поместить их под стандартной кухонной мойкой. Для нормальной работы им достаточно давления водопроводной воды (3,5 — 4 атм). При давлении воды менее 2 — 2,5 атмосфер необходим повышающий давление насос. Бытовые обратноосмотические фильтры оснащены небольшим гидроаккумулятором, который устраняет неудобства, связанные с невысокой производительностью, а также автоматическим диафрагменным клапаном, отключающим систему при его заполнении.

Стандартная конфигурация бытовой системы включает в себя пятимикронный механический картридж, предохраняющий мембрану от загрязнения и повреждения механическими частицами, и угольный предфильтр, защищающий ее от разрушающего воздействия остаточного хлора. После предварительной очистки вода подается на мембрану. Та вода, которая прошла через мембрану, поступает в накопительный мембранный бак. А та, что не прошла, стекает в канализацию.

— Получается, что обратноосмотические системы сбрасывают часть воды. Почему не может быть отфильтрована вся вода?

— Первые лабораторные установки на плоских мембранах работали в режиме тупиковой фильтрации. Однако это приводит к концентрированию растворенных веществ у поверхности мембраны, что влечет за собой ухудшение производительности и качества очищенной воды. На поверхности мембраны происходит осаждение малорастворимых соединений (солей жесткости, железа, органических соединений), что, в конечном итоге, выводит мембрану из строя. Поэтому процесс обратного осмоса всегда проводят в режиме тангенциальной фильтрации (cross-flow): разделяемый поток движется в осевом направлении по межмембранным каналам рулонного модуля, а фильтрат — спиралеобразно по дренажному материалу и поступает в отводящую трубку. Концентрат выходит с другой стороны модуля и либо весь поступает на сброс, либо часть его возвращается обратно на вход системы. Соотношение потоков регулируется таким образом, чтобы избежать появления отложений на поверхности мембраны. Количество сбрасываемой воды обычно составляет 30-45%.

Вернемся к устройству системы. На выходе из бака стоит финишный угольный фильтр и ультрафиолетовый стерилизатор. Угольный фильтр используется для доочистки воды от низкомолекулярных органических соединений, которые могут проникнуть через обратноосмотическую мембрану или попасть в чистую воду из резиновой груши бака-накопителя, придавая воде неприятный запах и вкус.

— Если через мембрану не могут пройти микроорганизмы и вирусы, зачем ультрафиолетовый стерилизатор? Тем более на хлорированной воде?

— Да, обратноосмотическая мембрана является непреодолимым барьером для бактерий и вирусов, и вода после мембраны получается практически стерильная. Однако могут возникнуть ситуации, когда повреждается мембрана. К тому же замена картриджей осуществляется не в стерильных условиях. Возможно обратное заражение очищенной воды в накопительном баке через кран. Одним словом, вероятность всегда отлична от нуля. Поэтому наличие УФ-стерилизатора является гарантией качества очищенной воды.

Некоторые системы оснащаются мощным насосом, встроенными средствами контроля качества воды, а также в них может отсутствовать накопительная емкость, так как они имеют достаточно высокую производительность. Такое оборудование уже относится к классу высококачественной бытовой техники, оно очень удобно в эксплуатации, однако стоит на порядок дороже, чем вышеописанные системы. Добавлю также, что системы, компоненты которых имеют разборную конструкцию (например, мембранный корпус, накопительный бак, УФ-стерилизатор), более гибки и дешевы в эксплуатации.

— В беседе Вы постоянно упоминаете полупроницаемые мембраны. Почему они пропускают только воду? Что они собой представляют?

— Механизм обратного осмоса на сегодняшний день достоверно неизвестен. Обратноосмотическая мембрана со стороны рабочей поверхности имеет селективный слой, который и участвует в разделении. Этот слой имеет очень мелкие поры, соизмеримые по своим размерам с молекулами растворенных веществ. Согласно наиболее распространенной теории, на поверхности селективного слоя мембраны и в ее порах образуется слой связанной воды, которая сильно отличается по свойствам от обычной воды. Связанная вода обладает пониженной растворяющей способностью и образует своеобразный барьер для многих веществ, но не для обычной воды. Полупроницаемые мембраны являются важнейшей составной частью обратноосмотических систем и именно они определяют качество и количество очищенной воды.

Каждая мембрана имеет показатели: селективность (степень задержания) по тому или иному компоненту и производительность. Как правило, мембраны сами по себе в виде пленки используются только для производства мембранных модулей. Мембранные модули могут иметь разнообразную конструкцию, но в настоящее время наиболее распространены рулонные мембранные модули на основе обратноосмотических композитных тонкослойных (TF) мембран.

— Производители других питьевых систем утверждают, что пить такую обессоленную воду вредно для организма, поскольку в ней практически отсутствуют полезные минеральные вещества.

— Во-первых, растворенные минеральные вещества в тех количествах, в которых они содержатся в обычной воде, не обеспечивают потребности в них человеческого организма при нормальном водопотреблении.

Во-вторых, та форма, в которой они присутствуют в воде, плохо способствует их усвоению. Человеческий организм привык усваивать ионы и микроэлементы в том виде, в котором они присутствуют в растительной и животной пище, т. е. в виде органических комплексов.

В-третьих, пища обеспечивает поступление в организм более 90% всех минеральных веществ. Например, в молоке содержание кальция (иона, отвечающего за жесткость воды) в 40 раз превышает его содержание в воде московского водопровода. При этом молоко пить полезно, а вода с такой жесткостью неминуемо приведет к образованию камней в почках и отложению солей в суставах. Вишневый нектар (разбавленный сок) содержит железо в концентрации 4 мг/л, что более чем в 10 раз превышает допустимую норму для воды. Регулярное употребление воды с таким содержанием железа для печени вреднее алкоголя. Лучше съесть одно яблоко, чем выпить 5 литров жесткой и железистой воды. Для обеспечения необходимой потребности в минеральных веществах человек должен, прежде всего, иметь полноценное питание.

И, в-четвертых: много ли Вы пьете воды?

Литр кофе в день.

— То-то и оно, что кофе. За счет своих высоких экстрактивных (извлекающих) свойств такая вода хорошо подходит для приготовления пищи, а также разнообразных напитков: кофе, чая, коктейлей (). Супы и борщи получаются более наваристыми и вкусными (), чай и кофе — более ароматными и насыщенными. При умывании такой водой исключается аллергическая реакция со стороны чувствительной кожи.

Эта вода часто используется в пищевой промышленности. Например, те же фруктовые соки в пакетах. Эти соки на Лианозовском или Останкинском заводе только разбавляются из концентрата. Или нормализованное молоко и молокопродукты, приготовленные из порошкового молока. Другие потребители чистой воды — предприятия по производству пива, прохладительных напитков, ликероводочных изделий, бутилированной столовой воды и многого другого.

— С пищевым производством все понятно. А где еще требуется обессоленная вода?

— Помимо пищевых производств обратноосмотические системы поставляют воду для медицины, микроэлектроники, фармацевтики, парфюмерии, химической промышленности и теплоэнергетики.

— В теплоэнергетике? А ионный обмен?

— Вода для паровых котлов должна иметь очень низкое содержание растворенных веществ, особенно таких, как соли жесткости, окись кремния, железо. Обратный осмос позволяет снизить содержание этих компонентов до требуемых величин. Действительно, традиционно в этой области применяются деионизаторы с регенерацией ионообменных смол растворами кислот и щелочей. Эти устройства при сопоставимой с обратноосмотическими системами стоимости имеют ряд существенных недостатков. Это и необходимость содержания реагентного хозяйства, и большой объем агрессивных кислотно-щелочных стоков, что предъявляет особые требования к дренажной системе. Затраты на расходные материалы (кислоты, щелочи) составляют зачастую немалые суммы. Для обеспечения непрерывной подачи очищенной воды необходимо дублирование оборудования, поскольку не допускается перерыв в работе.

Обратноосмотические системы практически лишены этих недостатков. Они способны работать 24 часа в сутки, более удобны в эксплуатации, требуют гораздо меньше расходных материалов (ингибиторы, моющие растворы), имеют неагрессивные сточные воды.

— Из Ваших слов получается, что обратный осмос позволяет решить все проблемы, связанные с очисткой воды. Так ли это на самом деле?

— И так, и не так. Принципиально на обратноосмотической установке возможно очистить воду любого качества. Однако от качества исходной воды будет зависеть производительность установки и ее ресурс. Например, если исходная вода очень жесткая или содержит большое количество железа или марганца, обратноосмотическая установка проработает на такой воде недолго и может выйти из строя. Потому что на поверхности рабочих колес насоса высокого давления и мембран образуются отложения, значительно снижающие производительность системы. Поэтому существует ряд требований к качеству исходной воды, при соблюдении которых обеспечивается большой срок эксплуатации без замены или промывки мембран.

Как правило, исходная вода проходит предварительную очистку. Состав системы предочистки определяется качеством исходной воды: при работе на хлорированной водопроводной воде устанавливают угольный фильтр. Подземные воды часто содержат железо и марганец, попадание которых в обратноосмотическую систему недопустимо. Для их задержания устанавливают обезжелезиватель. Иногда достаточно дозирующего насоса, который подает в исходную воду раствор ингибитора, препятствующего образованию отложений. Для предотвращения роста бактерий в стерильной воде устанавливают УФ-стерилизатор или озонатор. Поэтому обычно проблему получения чистой обессоленной воды решают комплексно, с привлечением других методов водоочистки.

— Существуют ли другие мембранные методы разделения, помимо обратного осмоса?

— Конечно: микрофильтрация, ультрафильтрация, нанофильтрация, электродиализ, первапорация и многие другие. Но это тема для отдельного разговора.

Беседовал Кирилл Иванов

› › Метод обратного осмоса: принцип

Обратный осмос, известный также как гиперфильтрация, лучший из известных способов фильтрации воды. Осмос позволяет удалять из водной массы мельчайшие частицы величиной с ионы. И для удаления из питьевой воды солей и других включений с тем, чтобы улучшить цвет, вкус или свойства жидкости. Этот процесс может быть использован для очистки таких жидкостей как этанол и гликоль, которые пройдут через обратноосмотическую мембрану, в то время как другие ионы и примеси она не пропустит. Осмос используют в фильтрах для воды, в том числе, для питья. Фильтры с осмосом применяют для производства воды, которая отвечает самым строгим из существующих требований. Самые жесткие требования конечно же предъявляет промышленная водоподготовка.

Обратный осмос: технология

Обратный осмос использует процесс, известный как перекресное течение, что позволяет мембране самоочищаться. В обратноосмотической технологии используется полупроницаемая мембрана, которая пропускает только молекулы воды и задерживает молекулы загрязняющих веществ. В то время, как часть жидкости проходит через мембрану, другая ее часть двигается в обратном направлении, вымывая из мембраны задержанные частички. В процессе требуется движущая сила, которая будет проталкивать жидкость через мембрану, наилучшим вариантом является давление, создаваемое помпой. Чем выше давление, тем больше движущая сила. Установки с осмосом способны задерживать бактерии, соли, сахара, протеины, частицы, красители и другие загрязняющие вещества, молекулярная масса которых больше 150-250 далтонов. Разделение ионов осмосом происходит с участием заряженных частиц. Это значит, что расстворенные ионы, которые несут заряд, равный зараряду солей, более вероятно будут отброшены мембраной, чем те, которые не заряжены, например органика. Чем больше заряд частицы и ее размер, тем выше вероятность того, что она будет отброшена мембраной.

Секреты мембраны

Идеальной системы обратного осмоса для дома не существует. Некоторые разработки лучше остальных, но ни одна из них не является панацеей от всех бед. Большинство производителей и дилеров рекомендуют подбирать фильтры обратного осмоса в зависимости от показателей исходной воды и от требований, выдвигаемых покупателем к качеству питьевой воды. Но бывает, что и этого не достаточно, ведь установка системы обратного осмоса не такая простая, как проточные фильтры для воды . Иногда это работает, иногда нет.

Как выглядит мембрана в разрезе

Бытовые фильтры с осмосом - основные компоненты

Общий дизайн фильтров обратного осмоса весьма консервативен, с учетом разве условий, для работы в которых они предназначаются. В целом, чем дороже система обратного осмоса, тем больше "что если..." рассмотрено и тем больше модификаций заложено в установку очистки воды. Как бы то ни было, учитывание всех возможных проблем с качеством питьевой воды сделает систему обратного осмоса неоправданно дорогой. "Проблемы с питьевой водой" будут всегда. Поскольку всегда есть кто-то, кому нужно гораздо больше, чем заложено в бытовой системе обратного осмоса, дилер по своему усмотрению может модифицировать ее. Понимая принцип работы основных компонентов системы обратного осмоса, дилер можете доработать ее дизайн применительно к нуждам заказчиков вашего региона.

Основные действующие компоненты системы:

Обратноосмотическая мембрана;
- ограничитель течения воды;
- седиментный предварительный фильтр воды;
- предватительный фильтр воды и постфильтр из активированного угля;
- накопительный бак;
- помпа.

Даже самая простые фильтры обратного осмоса не могут использоваться без первых трех компонентов, в то время как последние три служат для удослетворения специфических нужд покупателя. Правильный подбор и использование каждого компонента являются необходимыми для обеспечения правильной и бесперебойной работы системы обратного осмоса.

Выбор мембраны

По сути, обратноосмотическая мембрана - это сердце и душа системы обратного осмоса. Фильтры обратного осмоса начинается с подбора мембраны обратного осмоса, а другие компоненты выбираются исходя из свойств мембраны. Существует три типа мембраны обратного осмоса, каждая из которых имеет свои преимущества и недостатки: смесь триацетата целлюлозы с ацетатом целлюлозы (CTA); тонкослойная полупроницаемая мембрана (TLCR); модифицированный полисульфон (SPSF). Вода, прошедшая через мембраны обратного осмоса CTA, имеет самую низкую себестоимость питьевой воды. Низкая производительность ограничивает использование обратно осмотических мембран CTA там, где необходима высокая производительность, однако их стойкость к окислению позволяет им самоочищаться от производных хлора, находящихся в водопроводной воде. Это делает обратноосмотические мембраны CTA наиболее подходящими для типичных нужд водоподготовки. К тому же, пропущенный в накопительный бак хлор позволяет позволяет снизить уровень бактерий в питьевой воде. Мембраны обратного осмоса TLC сочетают в себе высокую производительность, высокий уровень отталкивания частиц и широкий приемлемый для работы уровень рН, что делает их идеально подходящими для применнеия во многих областях водоподготовки. В случаях высокого уровня потребления воды, при низких температурах и давлении воды, высокой концентрации нитратов или при высоком уровне рН (более 9,0) рекомендовано применять именно мембраны ТСL.

Однако, в связи с мембранами обратного осмоса TLC, нарaстает беспокойство по поводу полного очищения питьевой воды от хлора, что может привести к развитию в накопительных баках огромнейшего количества бактерий. В отношении себестоимости получаемой питьевой воды, приемнение мембран ТСL в системах обратного осмоса все еще остается наиболее дорогостоящим. Конечно, мембраны обратного осмоса SPSF сейчас намного проще приобрести, чем в прошлые года, однако они не идут ни в какое сравнение с производительностью и стоимостью обратноосмотических мембран CTA. Так же существует определенное опасение относительно способности мембран обратного осмоса SPSF очищать неумягченную воду. Но осмотические мембраны SPSF просто незаменимы для очищения умягченной воды с высоким уровнем рН, либо при черезвычайно высоких концентрациях нитратов. Мембраны же СТА и TCL хороши для применения в других случаях водоподготовки.

Ограничители течения

После мембраны обратного осмоса, ограничитель течения (потока) наиболее важный компонент системы обратного осмоса. Он контролирует регенерацию установки очистки воды (т.е количество очищенной воды в сравнении с водой, сброшенной в канализацию). Ограничитель потока должен быть разработан таким образом, чтобы он контролировал перекрестное течение вокруг рабочей поверхности осмотической мембраны, с тем, чтобы она оставалась чистой. Если ограничитель течения маленький, скорость пересеченного течения будет незначительной, что приведет к засорению мембраны обратного осмоса, обусловленному осаждением химических веществ, накоплением пестицидов, либо и тем, и другим. Поскольку чистая вода отделяется от входящего потока, концентрация загрязняющих веществ увеличивается пропорционально длине обратноосмотической мембраны. Если скорость перекрестного течения слишком низкая, загрязняющие вещества не будут вымываться с поверхности мембраны обратного осмоса. Если вы хотите получить от фильтров обратного осмоса большую производительность, то просто установка осмотической мембраны с большей производительностью может не быть эффективной. Вначале Вы получите повышенную производительность, однако мембрана обратного осмоса будет очень сильно засоряться из-за слишком большого объема воды, проходящего через нее, и из-за недостаточной ее длины, что не позволит перекрестному потоку очистить поверхность мембраны обратного осмоса.

Однако, из-за температуры входящего потока, давления и общего содержания растворенных веществ (TDS), которые влияют на объем воды, пропущенной через мембрану обратного осмоса, одна и та же система может быть приспособлена к к различным требованиям ко входящему потоку в разных местах. Обычные фильтры обратного осмоса рассчитаны на температуру 77°F (25°C), давление 4.2 бара и на TDS 500 ppm, а размеры ограничителя течения отвечают этим условиям работы. Если температура и давление Вашей воды ниже указанных, или уровень TDS выше, Вы можете использовать осмотическую мембрану с повышенной производительностью, ничего больше при этом не изменяя. Либо Вы можете установить ограничитель меньшего объема и не смывать деньги в канализацию. Отсуда, прямая связь между температурой и давлением воды, проходящей через мембрану обратного осмоса.

Наиболее важная вещь, которую следует сделать, когда Вы меняете ограничитель течения или используете обратноосмотическую мембрану с производительностью отличной от стандартной, это подсчитать время регенерации. Регенерация = входящий поток x 100%. Производители мембран обратного осмоса утверждают, что регенерация должна составлять 15 и меньше для максимального срока службы осмотической мембраны. Фильтры обратного осмоса расчитаны на 25% и больше. Вы будете правы, если останетесь между этими двумя цифрами и ваша предварительная водоочистка будет хорошей.

Седиментная фильтрация в процессе очистки питьевой воды

Несмотря на скорость перекрестного потока и регенерацию в Вашей установке очистки воды, Ваша осмотическая мембрана все равно засорится, если из входящего потока не были удалены механические частички. Чтобы удалить их будет достаточно 5-ти микронного седиментного картриджа, однако, при повышенном содержании солей это не выход. Поскольку большинство солей по размеру меньше 5 микрон, такой картридж их пропустит, они собьются в кучу и засорят мембрану обратного осмоса. Если обратноосмотическая мембрана засоряется, то в первую очередь следует винить предварительный фильтр воды, а не мембрану обратного осмоса. При высоких концентрациях солей в воде рекомендуется устанавливать механических фильтр воды с маленьким микражом. Независимо от содержания солей, дополнительные расходы на качественный 5-ти микронный фильтр воды будут оправданы эффективной защитой обратноосмотической мембраны.

Угольные фильтры в системы

Если Вы используете осмотическую мембрану TLC, то Вам необходимо исползовать угольный предварительный фильтр воды для удаления окислителей, даже если вода нехлорированая. В добавок к хлору, другие химикаты - включая бром, йод и различные соединения железа - приведут к скачкообразному увеличению прохождения солей через обратноосмотичекскую мембрану TLC. Кроме того, всегда используйте предварительный угольный фильтр воды и угольный постфильтр. Снова напомним Вам, что стоимость угольного фильтра намного меньше стоимости мембраны обратного осмоса, поэтому его стоит менять в установке очистки воды почаще.

Во многих системах обратного осмоса угольный фильтр воды устанавливается прямо перед краном. Такие угольные фильтры воды удаляют неприятный вкус хлора (в фильтрах обратного осмоса с CTA и SPSF), а также задерживают, все еще могущие присутствовать, вредные органические вещества. Большие молекулы органических веществ засоряют поверхность угольного фильтра, давая возможность более мелким, но очень часто более вредным, молекулам проникнуть во внутрь. Обратноосмотическая мембрана отталкивает большие молекулы органических веществ и других загрязнителей, давая возможность угольному постфильтру задерживать оставшиеся маленькие молекулы органики.

Фильтры с накопительный баком

Часто в процессе очитски питьевой воды недооценивают важность накопительного бака, но его просто необходимо включать в систему водоочистки. Бак должен быть достаточно большим, но, если он слишком велик, при его заполнении создается обратное давление, которое снижает эффективность работы установки с осмосом. Начинает производиться питьевая вода худшего качества, в канализацию же ее сливается намного больше, чем положено. Исходя из этого, не следует устанавливать в систему фильтров слишком большой накопительный бак без предварительной консультации с Вашим региональным представителем.

При подборе накопительного бака для установки обратного осмоса важна возможность легкой и простой его дезинфекции, особенно для систем с мембраной обратного осмоса TLC. В баке могут развиться бактерии, поэтому так важна возможность легкой и простой дезинфекции. Там, где существует возможность бактериального загрязнения, рекомендуют устанавливать фильтры воды типа FHCTF, в которых питьевая вода не застаивается.

Помпы

Помпы повышения давления воды можно использовать для увеличения производительности в этих системах. Однако, когда Вы устанавливает в фильтры помпу, то Вам следует больше внимания уделять процессу регенерации. Если Вы имеете дело с очень низкой температурой или давлением, Вы можете установить помпу без негативного влияния на фильтры с осмосом. Если Вы хотите увеличить производительность стандартной установки очистки питьевой воды, Вам следует соответственно заменить ограничитель течения. Также помпы могут быть использованы в фильтрах с осмосом для увеличения давления на осмотическую мембрану, что может улучшить качество питьевой воды.

Где купить систему c осмосом?

В настоящее время на рынке установок с осмосом под мойку рекомендуем обратить внимание на следующие марки: Гейзер, Аквафор, K-OSMOS, Merlin, Atoll (Атолл). С этими брендами наше предприятие работает уже продолжительное время. Хорошее качество сборки, фирменные комплектующие и, как следствие, минимальное количество нареканий со стороны потребителей. Такие же системы, также устанавливаются и в офисных установках очистки воды, в пурифаейрах или в питьевых фонтанчиках. Не забывайте интересоваться у менеджеров о проводимых акциях на пурифайеры.

2. Назначение

3. Решаемые проблемы

4. Области применения

5. Принцип работы

6. Типы обратного осмоса

7. Устройство. Схемы

8. Автоматизация

9. Госты. Нормативы

10. Рекуперация энергии

11. Справочник

1. Описание явления обратного осмоса

Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.

Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.

Мембрана работающая на основе обратного осмоса пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет.

Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.

Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением".

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану обратного осмоса в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.

Этот процесс называется "обратным осмосом". По этому принципу и работают все мембраны обратного осмоса.

Вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

Установки обратного осмоса в наличии на складе:

Модель

Произв-ность,
м3/час

Мощность,
кВт

Вес, кг

Габариты, мм

Скачать.pdf

2. Назначение

Система обратного осмоса предназначена для глубокой очистки и обессоливания воды, удаления органических соединений, микроорганизмов, взвесей, для подготовки воды хозяйственно-бытового, промышленного и питьевого назначения.

А также применяется на объектах:

  • АЭС (комплексы водоснабжения)
  • ТЭЦ, ГЭС (системы технологической очистки воды)
  • ГАЗОВАЯ ЭНЕРГЕТИКА (блочных комплексы водоподготовки)
  • ЖКХ (водоснабжение объектов I категории)
  • Научно-исследовательских комплексов (очистка воды для лабораторий по разработке бактериологического оружия)

3. Решаевые проблемы

Обратноосмотическая мембрана очень хорошо отделяет неорганические вещества. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества. Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Ниже приведены ориентировочные показатели, которым должна соответствовать исходная вода, подаваемая на обратноосмотические мембраны (наличие некоторого диапазона обусловливается требованиями разных производителей мембран):

мутность до 1-5 ЕМФ
окисляемость перманганатная до 3 мгО/л
водородный показатель (рН) 3-10, (иногда 2-11)
нефтепродукты 0,0-0,5 мг/л
сильные окислители (хлор свободный, озон) до 0,1 г/л
марганец общий (Mn) до 0,05 мг/л
железо общее (Fe) до 0,1-0,3 мг/л
кремниесоединения (Si) до 0,5-1,0 мг/л
сероводород 0,0 мг/л
индекс SDI до 3-5 ед.
минерализация общая до 3,0-20 г/л
температура воды 5-35 (иногда до 45) °С
давление 0,3-6,0 МПа
температура воздуха в помещении 5-35°С
влажность воздуха в помещении ≤ 70%

4. Области применения

Наиболее актуальными на сегодняшний день применениями фильтров обратного осмоса считаются:

Обессоливание, снижение минерализации (опреснение) подземных вод;

Опреснение морской воды;

Приготовление технологических растворов специального применения в промышленности;

Отделение ценных компонентов из растворов (концентрирование);

Концентрирование растворенного вещества.

Основным направлением использования обратного осмоса является очистка воды, главным образом, обессоливание солоноватых вод и особенно морской воды с целью получения питьевой воды. Другой важной областью применения обратноосмотических установок является использование обратного осмоса как стадии предварительного обессоливания воды при производстве ультрачистой воды для полупроводниковой, медицинской и теплоэнергетической отраслей промышленности.

На стадии концентрирования обратный осмос широко используется в пищевой промышленности (концентрирование фруктовых соков, сахара, кофе) и в молочной промышленности (для концентрирования молока на начальной стадии сыроделия), а также при очистке сточных вод (в гальванике для концентрирования гальваностоков).

Сравнение методов обессоливания (ионный обмен и обратный осмос)

Обратный осмос

Преимущества:

Очень высокое качество получаемой воды, которое обусловлено весьма «мягкими» с физико-химической точки зрения условиями проведения процесса;

Неограниченная производительность (путем набора стандартных модулей и блоков) и одновременно - небольшие габариты;

отношение: производительность/габариты - лучшее по сравнению с другими методами обессоливания - дистилляцией, ионообменом, электродиализом;

Относительно низкие эксплуатационные расходы;

Малый расход ингибиторов отложений и реагентов для отмывки отложений на мембранах;

Низкая энергоемкость (процесс осуществляется без фазовых переходов, и, следовательно, энергия требуется лишь для создания градиента давления и рециркуляции раствора);

Возможность почти во всех случаях сброса концентрата в канализацию (в окружающую среду) без обработки.

Недостатки обратного осмоса:

Необходима тщательная предподготовка воды для обеспечения большой производительности мембран и длительного срока их службы;

Большой объем сбрасываемого концентрата (с учетом компоновочных решений расход пермеата может составить 75-80% исходной воды, концентрат - 20-25%) и, следовательно, значительный расход исходной воды;

Большие капитальные затраты;

Желательный непрерывный режим работы установок.

Ионообмен

Преимущества:

Возможность получения воды очень высокого качества (многоступенчатые установки), в том числе для котлов любого давления и промывки печатных плат электронного оборудования;

Способность работать при резко меняющихся параметрах питающей воды;

Небольшие капитальные и энергозатраты;

Небольшой объем воды на собственные нужды, особенно у противоточных фильтров;

Недостатки:

Относительно большой расход реагентов, особенно у натрий-катионитных фильтров;

Эксплуатационные расходы увеличиваются пропорционально солесодержанию исходной воды и при необходимости уменьшать предел обессоливания обработанной воды;

В зависимости от качества исходной воды требуется предподготовка - иногда весьма сложная;

Необходима обработка сточных вод и сложности с их сбросом.

5. Принцип работы

В обратноосмотической технологии используется полупроницаемая мембрана, которая пропускает только молекулы воды и задерживает молекулы загрязняющих веществ. Наиболее часто в технологии обратного осмоса используется процесс, известный как перекресное течение, что позволяет мембране самоочищаться. В то время, как часть жидкости проходит через мембрану, другая ее часть двигается в обратном направлении, вымывая из мембраны обратного осмоса задержанные частички.

В процессе обратного осмоса требуется движущая сила, которая будет проталкивать жидкость через мембрану, наилучшим вариантом является давление, создаваемое помпой. Чем выше давление, тем больше движущая сила.

Установки обратного осмоса способны задерживать бактерии, соли, сахара, протеины, частицы, красители и другие загрязняющие вещества, молекулярная масса которых больше 150-250 далтонов.

Разделение ионов обратным осмосом происходит с участием заряженных частиц. Это значит, что расстворенные ионы, которые несут заряд, равный зараряду солей, более вероятно будут отброшены мембраной, чем те, которые не заряжены, например органика. Чем больше заряд частицы и ее размер, тем выше вероятность того, что она будет отброшена мембраной.

6. Типы обратного осмоса

В современной водоподготовке используются три основных типа мембран обратного осмоса: целлюлозные (CA) и из смеси триацетата целлюлозы с ацетатом целлюлозы (CTA), полностью из ароматического полиамида и тонкопленочные композитные (TFC) мембраны. Основные исходные требования, предъявляемые к мембранам следующие:

Свободная проницаемость для воды

Высокая селективность

Работоспособность при высоких давлениях

Стойкость в широком диапазоне pH и температуры

Устойчивость к воздействию химических веществ, в том числе окислителей (таких, как

свободный хлор)

Биологическая стойкость к бактериям

Низкая адгезия поверхностного слоя к осаждаемым веществам

Целлюлозные мембраны появились первыми, и именно на них в конце 1950-х годов был продемонстрирован принцип обратного осмоса. Эти мембраны асимметричны и состоят из тонкого плотного поверхностного слоя (от 0,2 до 0,5 мкм) и толстой пористой подложки. Задержка растворенных веществ осуществляется тонким плотным слоем и пористой подложкой, обеспечивающей прочность конструкции.

Ацетат целлюлозы может использоваться в листах или в виде полых волокон. Мембраны из ацетата целлюлозы недороги и просты в изготовлении, но имеют ряд ограничений. Асимметричная структура делает их восприимчивыми к уплотнению при высоких давлениях и, особенно при повышении температуры. Уплотнение происходит, когда тонкий плотный слой мембраны утолщается за счет слияния с толстой пористой подложкой, что приводит к сокращению потока продукта.

Мембраны из ацетата целлюлозы подвержены гидролизу и могут использоваться только в ограниченном диапазоне pH (самые низкие значен ия рН от 3 до 5, а самые высокие рН от 6 до 8, в зависимости от производителя). При температуре выше 35°C они начинают разрушаться, а также они уязвимы для атак бактерий.

Мембраны из ацетата целлюлозы имеют высокую проницаемость для воды, но плохо задерживают загрязнения с низким молекулярным весом.

В последствии были разработаны мембраны из триацетата целлюлозы с улучшенными характеристиками селективности по соли, сниженной чувствительностью к рН, высокой температуре и микробным атакам. Тем не менее, мембраны из триацетата целлюлозы имеют более низкую водопроницаемость, чем мембраны из ацетата целлюлозы. Чтобы получить желаемые характеристики обеих мембран, были разработаны смеси триацетата целлюлозы и ацетата целлюлозы.

Мембраны из армированного полиамида (е полиамидные мембраны) с полой конфигурацией волокна были впервые разработаны компанией Дюпон. Как и целлюлозные мембраны, они имеют асимметричную структуру с тонкой (от 0,1 до 1,0 мкм), плотной пленкой и пористой подложкой.

Полиамидные мембраны, в отличие от целлюлозных, имеют лучшую биологическую стойкость и менее восприимчивы к воздействию гидролиза. Они могут работать даже выше диапазона рН от 4 до 11, но постоянное использование на краях этого диапазона может привести к началу необратимого разрушения мембраны.

Оболочка этих мембран может выдерживать более высокие температуры, чем у целлюлозных. Однако, как и целлюлозные, они уплотняются при высоких давлениях и температурах. У них лучше селективность по NaCl и органическим веществам.

Основным недостатком полиамидных мембран является то, что они подвержены разрушению под воздействием окислителей, таких как свободный хлор.

Тонкопленочные композитные мембраны изготавливаются путем формирования тонкой и плотной поверхностной пленки (с большим сопротивлением по потоку для растворенных веществ) поверх пористой подложки.

Конструкционные материалы и технологические процессы для изготовления этих двух слоев могут быть различными и оптимизируются с целью получения лучшего сочетания большого потока воды и низкой проницаемости для растворенных в ней веществ.

Характеристики потока пропускаемой воды и сопротивляемости растворенным в ней веществам в основном определяются тонким поверхностным слоем, толщина которого колеблется в пределах от 0,01 до 0,1 мкм.

7. Устройство обратного осмоса.

Первой стадией процесса обратного осмоса является тонкая очистка исходной воды от механических примесей. Обычно для этого используются фильтры патронного типа, размещаемые в однопатронных или мультипатроных фильтродержателях, в зависимости от производительности ОО-установки. Данный фильтр относится к фильтрам периодического действия, работающим под давлением. Механизм работы патронных фильтрующих элементов относится к глубинной и/или поверхностной фильтрации, т.е. механические примеси, задерживаемые фильтрующим элементом, накапливаются внутри слоя фильтрующей перегородки.

Вода, очищенная на патронных фильтрах, подается на насос высокого давления, назначением которого является достижение давления исходной среды расчетного давления для осуществления массообменных процессов, протекающих на полупроницаемых обратноосмотических мембранах. Подбор высоконапорного насоса производится исходя из его рабочей характеристики. При этом рабочая точка насоса должна находится в диапазоне от 0,6 - 0,7 максимальной его производительности.

При невозможности установить «паритет» между давлением и производительностью насоса высокого давления (а это бывает чаще всего) между всасывающим и нагнетающим патрубками насоса устанавливается байпассный вентиль, с помощью которого и осуществляется данная операция (по показаниям ротаметра и манометра исходной воды, поступающей на установку обратного осмоса). Регулировка процесса повышения давления исходной воды производится один раз в процессе пуско-наладочных работ. В процессе эксплуатации ОО-установки осуществляется только контроль указанных параметров исходной воды.

После того как давление исходной воды повышено, она поступает на модули, в которых размещены обратноосмотические мембраны, где собственно и происходит разделение исходной воды на пермеат и концентрат. Концентрат, выходящий из установки обратного осмоса, имеет достаточно высокое давление и его транспортировка к месту сброса или утилизации не вызывает особых трудностей. Давление пермеата после обратноосмотической установки редко превышает 1 атм. Поэтому, чаще всего его приходиться подавать в накопительную емкость, откуда с помощью повышающего насоса он транспортируется на дальнейшие стадии очистки.

8. Автоматизация.

Компания ООО «НПЦ ПромВодОчистка» реализует установки обратного осмоса в различных комплектациях, в зависимости требования Заказчика и все установки без исключения разрабатываются индивидуально.

Установки обратного осмоса могут комплектоваться различным оборудованием. В стандартную комплектацию входит:
- Рама
- Насосы высокого давления
- Трубная обвязка и арматура
- Блок мембранных модулей
- Фильтр тонкой очистки, 5 мкм
- Блок CIP-мойка
- КИП и автоматика

Трубная обвязка и арматура изготовлена из ПВХ. Фильтр тонкой очистки предохраняет мембраны от засорения механическими частицами. Насос повышения давления - создает необходимое давление на входе в блок мембранных модулей. Блок мембранных модулей состоит из корпусов из стекловолокна, в которых установлены мембраны. Блок CIP-мойки предназначен для проведения периодических химических промывок мембран. КИП - обеспечивает автоматическое управление установкой.

Степень автоматизации установки обратного осмоса может быть различна. От самой простой - контролирование основных режимов работы, и заканчивая - сложным комплексом с контролированием более 50 различных параметров и вывода данных на ПК или диспетчерский пульт

9. Нормативы. Госты.

Питьевая вода. Требования по СанПин 2.1.4.1074-01

Дистиллированная вода. Требования по ГОСТ 6709-72

Дистиллированная вода широко используется в различных отраслях промышленности (для изготовления косметики, тосолов), в химических лабораториях, на химических производствах и т.д.

Физико-химические показатели дистиллированной воды по ГОСТ 6709-72

Наименование показателя

Норма

1. Массовая концентрация остатка после выпаривания, мг/дм 3

не более 5

2. Массовая концентрация аммиака и аммонийных солей (NH 4), мг/дм 3

не более 0,02

3. Массовая концентрация нитратов (КО 3), мг/дм 3

не более 0,2

4. Массовая концентрация сульфатов (SO 4), мг/дм 3

не более 0,5

5. Массовая концентрация хлоридов (Сl), мг/дм 3

не более 0,02

6. Массовая концентрация алюминия (Аl), мг/дм 3

не более 0,05

7. Массовая концентрация железа (Fe), мг/дм 3

не более 0,05

8. Массовая концентрация кальция (Сa), мг/дм 3

не более 0,8

9. Массовая концентрация меди (Сu), мг/дм 3

не более 0,02

10. Массовая концентрация свинца (Рb), %

не более 0,05

11. Массовая концентрация цинка (Zn), мг/дм 3

не более 0,2

12. Массовая концентрация веществ, восстанавливающих КМnО 4 (O), мг/дм 3

не более 0,08

13. рН воды

14. Удельная электрическая проводимость при 20°С, См/м

не более 5·10 -4

Основным показателем, контролируемым при использовании дистиллированной воды, является электрическая проводимость, которая не должна превышать 5 мкСм/см.

Требования по микросименсам

деминерализованная вода—от 0,1 до 10 мкСм/см;
питьевая вода — от 100 до 1300 мкСм/см;
поверхностные воды — от 100 до 8000 мкСм/см;
сточные воды — от 1000 до 8000 мкСм/см;
солоноватая и морская вода — от 1000 до 80000 мкСм/см;
концентрированные кислоты — от 80000 до 2 млн. мкСм/см.

10. Рекуперация энергии.

При смешении даже самой простой системы: высоконапорного насоса и мембранной одноуровневой установки с выходом фильтрата 40% - удельное потребление энергии остается очень высоким (около 6-7 кВт*ч на 1 м 3 произведенной воды), при этом задвижка на сбросе концентрата должна пропускать 60% потока исходной воды, входящего с давлением, равным входному, минус потери напора в модулях (от 1 до 2 бар).

Таким образом, идея использования концентрата для работы турбины в целях рекуперации его энергии возникла очень быстро и в настоящее время такая методика является экономически целесообразной для любых размеров установки.

Многочисленные системы рекуперации энергии, существующие в настоящее время, можно объединить в две большие группы.

1. Турбина типа “ Pelton ” рекуперирует энергию концентрата и используете повторно на валу высоконапорного насоса, что позволяет разгрузить двигатель с момента производства концентрата.

Примечание. Процедуры запуска и автоматического останова должны прорабатываться вместе с проектировщиком.

При работе этой системы потребление энергии в рассмотренном случае снизится на 3 кВт*ч на 1 м 3 , если выбранный высоконапорный насос имеет КПД выше 85%, а система - только одну ступень обработки.

Примечание: Другие, менее совершенные типы турбин не используются для работы на больших установках.

В этом случае весь комплекс установок данной системы (предварительная обработка, перекачивание насосами из моря, нагнетание полученной воды) будет потреблять около 4,0-4,5 кВт*ч на 1 м 3 .

2. Система, называемая системой обмена энергии рекуперирует энергию концентрата , чтобы воздействовать непосредственно на такой же объем предварительно обработанной воды с помощью давления на нескольки бар ниже давления подачи (из-за потерь давления в модулях и обменнике энергии).

В этом случае высоконапорный насос с точностью 1 или 2% (учитывая внутренние утечки в системе обмена) будет перекачивать только расход, равный расходу пермеата, т.е. в данном случае 41 м 3 /час, что показано в примере на рисунке.

Насос-бустер будет компенсировать потерю напора, о которой говорилось выше (3 бар). Такие системы (ротационные или линейные со свободным поршнемимеют более высокий КПД (94-97%) по сравнению с центробежными насосами. Удалось показать, что установка, работающая точно с проектнымипараметрами на морской воде с солесодержанием 36 г/л, может потреблять не более 2 кВт*ч на 1 м 3 полученной воды.

В целом выигрыш энергии по сравнению с турбиной “Pelton ” составляет 0,5 - 0,8 кВт*ч на 1 м 3 и таким образом, общее потребление энергии этими системами составляет от 3,2 до 4 кВт*ч на 1 м 3 получаемой воды.

Примечание: При включении второй ступени обработки (100%) к вышеуказанным цифрам необходимо добавить 0,5 кВт*ч/м 3 (энергопотребление второй ступени)

11. Справочник.

Соотношение единиц измерения объема

Из В

cм 3

м 3

литр (дм 3)

дюйм 3

фут 3

UK
пинта

UK
галлон

US
пинта

US
галлон

cм 3

0.001

0.061024

0.0000353

0.001760

0.00022

0.002113

0.000264

м 3

1000

61023.7

35.3147

1759.75

219.969

2113.38

264.172

литр (дм 3)

1000

0.001

61.0237

0.035315

1.75975

0.219969

2.11338

0.264172

дюйм 3

16.3871

0.016387

0.0005787

0.028837

0.003605

0.034632

0.004329

фут 3

28316.8

0.028317

28.3168

1728

49.8307

6.22883

59.8442

7.48052

ярд 3

764555

0.764555

764.555

46656

1345.429

168.1784

1615.793

201.974

UK
пинта

568.261

0.0005683

0.568261

34.6774

0.020068

0.125

1.20095

0.150119

UK
галлон

4546.09

0.0045461

4.54609

277.42

0.160544

9.6076

1.20095

US
пинта

473.176

0.0004732

0.473176

28.875

0.01671

0.832674

0.104084

0.125

US
гал лон

3785.41

0.0037854

3.785411

0.133681

6.661392

0.832674

Соотношение единиц измерения давления

Из В

атм

мм рт.ст.

мбар

бар

паскаль

дюйм
вод.ст.

атм

1013.25

1.0132

101325

406.781

14.6959

мм рт.ст.

0.0013158

1.33322

0.001333

133.322

0.53524

0.019337

мбар

0.0009869

0.750062

0.001

0.401463

0.014504

бар

0.9869

750.062

1000

100000

401.463

14.504

паскаль

0.0000099

0.007501

0.01

0.00001

0.004015

0.000145

дюйм
вод.ст.

0.0024583

1.86832

2.49089

0.002491

249.089

0.036127

дюйм
рт.ст.

0.033421

25.4

33.8639

0.0338639

3386.39

13.5951

0.491154

фунт/дюйм 2

0.068046

51.7149

68.9476

0.068948

6894.76

фут 3 /час

UK
галл/час

US
галл/час

литр/сек
(дм 3 /сек)

фут 3 /час

UK галл/час

US галл/час

На заметку

Установив обратноосмотическую систему очистки воды у себя на кухне под мойкой, вы экономите на покупке воды в бутылках. Стоимость воды, которую вы получите дома, – менее 1,7 руб. за литр в первый год после покупки фильтра, и 70 копеек за литр в дальнейшем (для семьи из 3 человек).

Принцип работы фильтра обратного осмоса.

Давление водопровода “проталкивает” воду сквозь обратноосмотическую мембрану. Она не впитывает никакие другие вещества, кроме воды, поэтому вредные примеси и соли жесткости остаются на ее поверхности, а затем смываются в канализацию (дренаж). В основе механизма работы обратного осмоса лежит природный биологический процесс – осмос: с его помощью клетки растений, животных и человека насыщаются полезными веществами (вместе с водой, которая проносит их через клеточную мембрану).

Какая вода получается после очистки обратным осмосом?

Какие бы примеси ни содержались в воде, фильтр обратного осмоса делает эту воду безопасной. Он устраняет даже пестициды, нитраты, гормоны, антибиотики, бактерии и вирусы. Госпитали и станции диализа используют обратноосмотические системы для удаления из воды самых сложноотделяемых примесей (их микроколичества могут навредить здоровью). Из-за высокой степени безопасности вода, очищенная фильтрами обратного осмоса, лучше всего подходит для приготовления детского питания.

Почему многие используют обратный осмос для защиты от накипи?

Мембрана в обратноосмотической установке совсем не пропускает соли жесткости (кальций и магний), из-за которых появляется накипь и ломается техника. Поэтому обратный осмос – самое эффективное средство очистки жесткой воды. Сравним: в для воды умягчающие картриджи нужно менять каждые 1-2 месяца, а в системах обратного осмоса накипь не появится в течение всего срока службы мембраны (1,5-2 года)

Повара, бариста и специалисты по здоровому питанию рекомендуют обратный осмос.

На заметку

Лучше всего готовить еду и напитки на мягкой, умеренно минерализованной воде. Жесткая вода не подходит для кулинарии, потому что из-за избытка минералов вода плохо “вбирает” вкусы и ароматы. Вода совсем без минералов непривычна на вкус.

Качественный бытовой фильтр обратного осмоса после глубокой очистки добавляет в воду полезные минералы (например, магний) в оптимальной концентрации. И доводит уровень кислотности воды (pH) до нейтрального.

Вода с небольшим содержанием минералов и нейтральным уровнем pH благоприятна для здоровья. Она подойдет для людей с нарушением кислотно-щелочного баланса и с чувствительным пищеварением. Умеренно минерализованная вода ускоряет выведение токсинов, помогает нам лучше усваивать пищу и получать от нее максимум пользы и удовольствия.

Как выбрать фильтр обратного осмоса?

Мембранные фильтры для очистки воды с обратным осмосом удаляют частицы, которые в 100 тысяч раз меньше толщины человеческого волоса (частицы до 0,001 микрон). Такая глубокая фильтрация требует времени. Чтобы вам не приходилось ждать, пока вода наберется в чайник или кастрюлю, почти во всех моделях используется накопительный бак для чистой воды.

Если место под мойкой ограничено, лучше выбирать систему с компактным встроенным баком для чистой воды.

В стандартном мембранном фильтре обратного осмоса под мойку воды в баке достаточно для семьи из 5-6 человек. Но при любом объеме бака, хорошо, если он будет наполняться быстро. Особенно если вы готовите обед на компанию родственников или друзей.

Если вы часто готовите дома на большую семью и любите принимать гостей - выбирайте фильтр для воды, который накопит 5 литров чистой воды не дольше, чем за час.

Скорость набора воды зависит от конструкции обратноосмотического фильтра и давления в водопроводе. Чем оно выше, тем быстрее и эффективнее работает фильтр, и тем меньше воды он расходует на подготовку литра чистой питьевой. При давлении ниже 3,5 атмосфер классическому фильтру обратного осмоса нужен электрический . Иначе отфильтрованная вода будет накапливаться в баке слишком медленно, а часть воды будет постоянно утекать в дренаж.

На заметку

Во многих домах давление водопроводной сети низкое. Один из признаков: слабый напор холодной воды из крана. Учитывайте это, прежде чем купить фильтр. Стоит обратить внимание на те модели, которые стабильно работают при низком давлении водопровода, и сливают в дренаж как можно меньше воды.

Фильтры обратного осмоса Аквафор

Аквафор разработал и запатентовал технологию водо-водяного бака для фильтров обратного осмоса. Модели, в которых используется водо-водяной бак (например, ) имеют следующие особенности:

  • Фильтруют воду быстрее классических систем - бак 5 литров наполняется около 40-60 минут (скорость зависит от давления водопровода).
  • Компактные и удобно размещаются под мойкой, поскольку бак встроен в корпус фильтра. Останется место и для мусорного ведра, и для чистящих средств.
  • Экономичные. На 1 литр очищенной воды они расходуют в среднем 5 литров, чтобы смыть с мембраны вредные примеси. Классическая система обратного осмоса тратит в 2 раза больше воды (8-15 литров). Чем меньше воды уходит в дренаж, тем реже вам нужно менять картриджи предварительной очистки. Такие картриджи есть в каждом фильтре обратного осмоса, они защищают мембрану от хлора и удаляют из воды ржавчину, песок и ил.
  • Автономные. Работают без насоса и электричества, поскольку достаточно давления водопровода в 2 атмосферы. Классические системы очистки воды обратным осмосом (с водо-воздушным баком) требуют давления не менее 3,5 атмосфер или установки электронасоса.
    • Надежность и стабильность фильтра зависит от работы каждого картриджа в нем. Всегда меняйте вовремя. Зарегистрируйте свой фильтр для воды, и мы напомним вам о замене.

Сегодня наиболее совершенная - осмос. Как и все подобные системы, она имеет и некоторые слабые стороны. Как фильтруется жидкость в такой системе? Что представляет собой обратный осмос?

Система очистки воды

Осмос - это свойство перетекания воды от слабого солевого раствора к концентрированному. А - это прогрессивная система, работающая наоборот, с ее помощью концентрация соли в жидкости уменьшается.

Поэтому сначала такой тип фильтрации использовали для создания из соленой морской

Как работает система очистки осмоса?

Жидкость проходит через специальную мембрану, которая носит название полупроницаемой. Через ее структуру могут проходить лишь молекулы воды, кислорода или молекулы меньшего размера. Мембрана не выводит из жидкости органические соединения хлора и гербициды, т.к. их молекула имеет меньший размер, чем осмотическая мембрана. В системе осмос очистка воды производится в несколько этапов, давайте их рассмотрим подробнее.

Первый этап - предварительная очистка

Эта ступень является очень важной. Самый дорогой сменный элемент ее - это мембрана обратного осмоса. На длительность ее службы влияет качество подаваемой жидкости. На данном этапе применяются 3 элемента имеющие сменные фильтры очистки воды обратного осмоса, которые подготавливают воду еще до подачи на мембрану.

В первом элементе имеется полипропиленовый пятимикронный картридж механической очистки, выполняющий важную функцию, он производит фильтрацию воды от нерастворенных частиц, имеющих размер больше 5 микрон (помогает избавиться от ржавчины, песка и прочих примесей).

Во втором фильтрующем элементе находится картридж, содержащий гранулированный активированный уголь, он позволяет очистить воду от хлора, хлорорганических соединений, пестицидов и гербицидов, неприятного привкуса и запаха.

В третьем фильтрующем элементе есть картридж, в котором содержится прессованный брикетированный уголь. Он должен удалять из воды органические соединения, летучие органические вещества (тетрахлорид, бензол, углерод) и мелкие частицы угольной пыли, оказывающие пагубное воздействие на мембрану, они вымываются на 2-ой ступени фильтрации.

Второй этап

На этом этапе вода, пройдя предварительную очистку, направляется на мембрану, которая является главным фильтрующим элементом системы осмос, очистка жидкости при этом производится на глубоком уровне, позволяя получить питьевую воду самого высокого качества. Другими словами, она является своего рода сеткой, а размер ее ячеек можно сравнить с размером молекул воды.

Конечно, через эту «сетку» могут проходить или частицы жидкости, или вещества, имеющие меньший размер молекул, - растворенный в воде водород, кислород и т.д.

Недостатки системы очистки

Так как для корректного функционирования (система осмос) очистка воды должна производиться под некоторым давление, а оно не всегда может обеспечиваться нашим водопроводом, то возможно будет нужен специальный насос (помпа), который повысит давление. Кроме насоса также понадобится подключить систему к электричеству - это тоже ее недостаток.

Обратный осмос имеет преимущества перед другими фильтрующими системами, которое состоит в возможности удаления 99% загрязнений. Но это не означает возможность мембраны системы задерживать все минералы и соли, которые содержатся в воде. А значит, получаемая после такой очистки вода будет являться деминерализированной и поэтому не может считаться полезной для здоровья людей. Скорее напротив, вода, в которой полностью отсутствуют соли и минералы, вымывает из человеческого организма нужные ему полезные элементы, что может провоцировать серьезные заболевания. Поэтому, лучшим вариантом является осмос - очистка воды. Отзывы потребителей тоже говорят в пользу этой системы очистки, но есть и такие, кто предпочитает покупать воду в бутылках.

Фильтрованная или бутилированная?

При выборе между водой в бутылках и системой обратного осмоса, второй вариант оказывается лучше. Бутылированная вода, как правило, фильтруется как раз при помощи осмотического метода, однако на бутылках не всегда говорится об источнике или способе очистки. Даже при проведении детальных испытаний бывает, что производитель не дает каких-либо разумных объяснений о качестве содержащейся в бутылке жидкости.

К тому же часто встречаются рекомендации пропускать воду через осмос, очистка воды производится по системе, приведенной выше, это позволяет улучшить вкусовые качества и повысить полезные Получается большая минерализация, а отсюда и лучшее регулирование питательного рациона, дающее возможность минералам и полезным веществам в организме восполняться в полной мере.

Есть мнение, что человеческий организм самостоятельно не может регулировать уровень содержания соли и воды, очищение при помощи метода обратного осмоса не оказывает на этот процесс особого влияния.

Далее мы расскажем об отзывах пользователей об отрицательных сторонах данной системы и сделаем анализ, который поможет нам увидеть, правда ли фильтры для очистки воды осмос имеют приведенные недостатки, или же они возникают в процессе неправильного их использования.

Застой воды

Некоторые люди говорили о плохом вкусе воды, который появлялся после того, как были заменены дополнительные верхние картриджи биокерамического основного или минерализатора. Но это связано не с самими фильтрами и их возможностью портить воду, а с тем, что человек неправильно использовал фильтр. Картриджы водоподготовки содержат до 3 стаканов жидкости. Эта вода, как и та, которая находится в баке, не может застаиваться. Чтобы избавиться от постороннего запаха и вкуса нужно или использовать минерализатор (биокерамический картридж) ежедневно, или сливать несколько стаканов жидкости.

Если у всей воды после фильтрации имеется странный запах или привкус, жидкость застаивается не в картриджах, а в баке для хранения воды. Здесь, как правило, причиной неполадки является то, что вовремя не был заменен постугольный картридж (а делать это нужно 1 раз в год), или это происходит из-за неполного использования ресурса бака (гидроакумулятора). Если вам не удается использовать объем фильтра целиком (баки имеют емкость 15-12л., 11-8л., 8-6л.) нужно проводить искусственное обновление воды в баке один раз в месяц.

Вы можете перекрыть кран перед фильтром и постепенно тратить лишнюю очищенную воду, а можете набрать ее в большую емкость или слить из бака в канализацию. Если фильтр используют 3-4 чел., то лучше выбирать бак наименьшего размера (8 л.).

Очищенной воде свойственно застаиваться, так как при использовании системы осмос очистка воды производится до качества дестиллированной. В ней способны размножаться бактерии, и при отсутствии протока может появиться привкус или посторонний запах. Долго хранить жидкость можно, только если в нее будут добавлены антибиотики, такие как добавляются в бассейны. Они являются вредными, и это является главным недостатком бутилированной воды, которую также очищают способом обратного осмоса, но она может храниться дольше.

Недостаток минералов

Нам часто говорят, что жидкость, прошедшая очистку обратноосмотической системой фильтрации является слабоминерализированной. И это так, выходя из обратного осмоса вода имеет 1/3 минералов в сравнении с входной, водопроводной, но это не говорит о том, что она может нанести вред здоровью человека.

Если вы желаете насытить минералами очищенную воду, то рекомендуется использовать минерализатор.

Низкая скорость очисти воды

Система очистки воды обратного осмоса имеет низкую скорость работы, она накапливает уже очищенную воду - это минус фильтров обратного осмоса. Здесь и серебро не поможет, так как обеззараживающее действие, которое оказывают ионы этого металла, является недостаточно эффективным и возникает опасность проникновения серебра в очищенную воду. Вообще его частицы очень вредны для человека. Например, в Соединенных Штатах запрещается упоминать дезинфицирующие свойства в рекламе пищевых детских продуктов, в нашей стране таких запретов нет.

Взвесив все «за» и «против», нужно просто определиться с выбором, возможно, это будет балансировка между разными методами фильтрации. Одно несомненно - очистка воды необходима и жизненно важна в современных условиях.