Воздушный режим здания. Воздушный режим современного здания Работа системы вентиляции

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздухово дам, обтекания здания потоком воздуха и взаимодействия здания с ок ружающей воздушной средой объединяются общим понятием воздуш ный режим здания. В отоплении рассматривается тепловой режим зда ния. Эти два режима, а также влажностный режим тесно связаны меж ду собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор про изводительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и рас пределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости дви жения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воз духа и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Краевая задача воздушного режима объединяет следующие вопросы:

а) определение количества воздуха, проходящего через наружные (инфильтрация и эксфильтрация) и внутренние (перетекание) ограж дения. Инфильтрация приводит к увеличению теплопотерь помещений. Наибольшая инфильтрация наблюдается в нижних этажах многоэтаж ных зданий и в высоких производственных помещениях. Неорганизо ванное перетекание воздуха между помещениями приводит к загрязне нию чистых помещений и распространению по зданию неприятных запахов;

б) расчет площадей отверстий для аэрации;

в) расчет размеров каналов, воздуховодов, шахт и других элемен тов систем вентиляции;

г) выбор способа обработки воздуха - придание ему определен ных «кондиций»: для притока - это нагрев (охлаждение), увлажнение (осушка), очистка от пыли, озонирование; для вытяжки - это очистка от пыли и вредных газов;

д) разработка мероприятий по защите помещений от врывания холодного наружного воздуха через открытые проемы (наружные две ри, ворота, технологические отверстия). Для защиты обычно применяют воздушные и воздушно-тепловые завесы.

Внешняя задача воздушного режима включает следующие вопросы:

а) определение давления, создаваемого ветром, на здание и от дельные его элементы (например, дефлектор, фонарь, фасады и т. д.);

б) расчет максимально возможного количества выбросов, не при водящего к загрязнению территории промышленных предприятий; определение проветриваемости пространства вблизи здания и между отдельными зданиями на промышленной площадке;

в) выбор мест расположения воздухозаборов и вытяжных шахт вентиляционных систем;

г) расчет и прогнозирование загрязнения атмосферы вредными вы бросами; проверка достаточности степени очистки выбрасываемого за грязненного воздуха.


Принципиальные решения вентиляции пром. здания.


42. Звук и шум, их природа, физические характеристики. Источники возникновения шума в вентиляционных системах.

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры.

Первоначально слово шум относилось исключительно к звуковым колебаниям, однако в современной науке оно было распространено и на другие виды колебаний (радио-, электричество).

Шум - совокупность апериодических звуков различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятный воспринимаемый звук.

Классификация шума. Шумы, состоящие из беспорядочного сочетания звуков, носят название статистических. Шумы с преобладанием какого-либо тона, улавливаемого на слух, называются тональными.

В зависимости от среды, в которой распространяется звук, условно различают структурные или корпусные и воздушные шумы. Структурные шумы возникают при непосредственном контакте колеблющегося тела с частями машины, трубопроводами, строительными конструкциями и т. д. и распространяются по ним в виде волн (продольных, поперечных или тех и других одновременно). Колеблющиеся поверхности сообщают колебания прилегающим к ним частицам воздуха, образуя звуковые волны. В тех случаях, когда источник шума не связан с какими-либо конструкциями, излучаемый им в воздух шум носит название воздушного.

По характеру возникновения шум условно делят на механический, аэродинамический и магнитный.

По характеру изменения общей интенсивности во времени шумы подразделяются на импульсные и стабильные. У импульсного шума происходит быстрое нарастание звуковой энергии и быстрый спад, после чего следует длительный перерыв. У стабильного шума энергия во времени изменяется мало.

По продолжительности действия шумы подразделяют на продолжительные (суммарная длительность непрерывно или с паузами не менее 4 ч в смену) и кратковременные (длительность менее 4 ч в смену).

Звук, в широком смысле - упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания; в узком смысле - субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, - ультразвуком, от 1 ГГц - гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

Источником шума и вибрации в вентиляционных системах является вентилятор, в котором имеют место нестационарные процессы течения воздуха через рабочее колесо и в самом кожухе. К их числу относятся пульсации скорости, образование и срыв вихрей с элементов вентилятора. Указанные факторы являются причиной возникновения аэродинамического шума.

Е.Я. Юдин, исследовавший шум вентиляционных установок, указывает на три основные составляющие аэродинамического шума, создаваемого вентилятором:

1) вихревой шум - следствие образования вихрей и периодического срыва их при обтекании элементов вентилятора потоком воздуха;

2) шум от местных неоднородностей потока, образующихся на входе и выходе из колеса и приводящих к нестационарному обтеканию лопаток и неподвижных элементов вентилятора, расположенных около колеса;

3) шум вращения - каждая движущаяся лопатка колеса вентилятора является источником возмущения воздушной среды и образования вихрей. Доля шума вращения в общем шуме вентилятора обычно незначительна.

Колебания элементов конструкции вентиляционной установки, часто вследствие неудовлетворительной балансировки колеса, являются причиной механического шума. Механический шума вентилятора обычно имеет ударный характер, пример тому - стуки в зазорах изношенных подшипников.

Зависимость шума от окружной скорости рабочего колеса при различных характеристиках сети для центробежного вентилятора с загнутыми вперед лопатками представлена на рисунке. Из рисунка следует, что при окружной скорости более 13 м/с механический шум шарикоподшипников «маскируется» аэродинамическим шумом; при меньшей скорости шум подшипников преобладает. При окружной скорости более 13 м/с уровень аэродинамического шума растет быстрее уровня механического шума. У центробежных вентиляторов с гнутыми назад лопатками уровень аэродинамического шума несколько меньше, чем у вентиляторов с лопатками, загнутыми вперед.

В системах вентиляции кроме вентилятора источниками шума могут быть вихри, образующиеся в элементах воздуховодов и в вентиляционных решетках, а также колебания недостаточно жестких стенок воздуховодов. Кроме того, возможно проникновение через стенки воздуховодов и вентиляционные решетки посторонних шумов из соседних помещений, через которые проходит воздуховод.

Воздух, находящийся внутри помещений, может изменять свой состав, температуру и влажность под действием самых разнообразных факторов: изменений параметров наружного (атмосферного) воздуха, выделения тепла, влаги, пыли и т.д. В результате воздействия этих факторов воздух помещений может принимать неблагоприятные состояния для людей. Чтобы избежать чрезмерного ухудшения качества внутреннего воздуха, требуется осуществлять воздухообмен, то есть производить смену воздуха в помещении. Таким образом, основной задачей вентиляции является обеспечение воздухообмена в помещении для поддержания расчетных параметров внутреннего воздуха .

Вентиляцией называется совокупность мероприятий и устройств, обеспечивающих расчетный воздухообмен в помещениях . Вентиляция (ВЕ) помещений обычно обеспечивается при помощи одной или нескольких специальных инженерных систем – систем вентиляции (СВЕ), которые состоят из различных технических устройств. Эти устройства предназначены для выполнения отдельных задач:

  • нагревание воздуха (воздухонагреватели),
  • очистка (фильтры),
  • транспортирование воздуха (воздуховоды),
  • побуждение движения (вентиляторы),
  • распределение воздуха в помещении (воздухораспределители),
  • открывание и закрывание каналов для движения воздуха (клапана и заслонки),
  • снижение уровня шума (шумоглушители),
  • снижение вибрации (виброизоляторы и гибкие вставки), и многое другое.

Кроме применения технических устройств для нормального функционирования вентиляции требуется реализация некоторых технических и организационных мероприятий. К примеру, для снижения уровня шума требуется соблюдение нормируемых скоростей воздуха в воздуховодах. ВЕ должна обеспечивать не просто воздухообмен (ВО), а расчетный воздухообмен (РВО). Таким образом, устройство ВЕ требует обязательного предварительного проектирования , в процессе которого определяется РВО, конструкция системы и режимы работы всех ее устройств. Поэтому ВЕ не следует путать с проветриванием, которое представляет неорганизованный воздухообмен. Когда житель открывает форточку в жилой комнате, это еще не вентиляция, так как неизвестно, сколько воздуха требуется, и сколько его в действительности поступает в помещение. Если же выполнены специальные расчеты, и определено, сколько воздуха надо подать в данное помещение и на какой угол надо открыть форточку, чтобы именно такое количество его и поступало в помещение, то можно говорить об устройстве вентиляции с естественным побуждением движения воздуха.



Вопрос 46.(+ Вопрос 80). Какие вопросы решает внутренняя задача воздушного режима?

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. При рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Вопрос 47. Какие вопросы решает краевая задача воздушного режима?

Краевая задача воздушного режима объединяет следующие вопросы:

а) определение количества воздуха, проходящего через наружные (инфильтрация и эксфильтрация) и внутренние (перетекание) ограждения. Инфильтрация приводит к увеличению теплопотерь помещений. Наибольшая инфильтрация наблюдается в нижних этажах многоэтажных зданий и в высоких производственных помещениях. Неорганизованное перетекание воздуха между помещениями приводит к загрязнению чистых помещений и распространению по зданию неприятных запахов;



б) расчет площадей отверстий для аэрации;

в) расчет размеров каналов, воздуховодов, шахт и других элементов систем вентиляции;

г) выбор способа обработки воздуха - придание ему определенных «кондиций»: для притока - это нагрев (охлаждение), увлажнение (осушка), очистка от пыли, озонирование; для вытяжки - это очистка от пыли и вредных газов;

д) разработка мероприятий по защите помещений от врывания холодного наружного воздуха через открытые проемы (наружные двери, ворота, технологические отверстия). Для защиты обычно применяют воздушные и воздушно-тепловые завесы.

Вопрос 48. Какие вопросы решает внешняя задача воздушного режима?

Внешняя задача воздушного режима включает следующие вопросы:

а) определение давления, создаваемого ветром, на здание и отдельные его элементы (например, дефлектор, фонарь, фасады и т. д.);

б) расчет максимально возможного количества выбросов, не приводящего к загрязнению территории промышленных предприятий; определение проветриваемости пространства вблизи здания и между отдельными зданиями на промышленной площадке;

в) выбор мест расположения воздухозаборов и вытяжных шахт вентиляционных систем;

г) расчет и прогнозирование загрязнения атмосферы вредными выбросами; проверка достаточности степени очистки выбрасываемого загрязненного воздуха.

Тепловой режим здания

Общая схема теплообмена в помещении

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров воздуха в плане и по высоте помещения, а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств.

Для изучения формирования микроклимата, его динамики и способов воздействия на него нужно знать законы теплообмена в помещении.

Виды теплообмена в помещении: конвективный - возникает между воздухом и поверхностями ограждений и приборов системы отопления – охлаждения, лучистый - между отдельными поверхностями. В результате турбулентного перемешивания неизотермических струй воздуха с воздухом основного объема помещения происходит «струйный» теплообмен. Внутренние поверхности наружных ограждений в основном теплопроводностью через толщину конструкций передают теплоту наружному воздуху.

Тепловой баланс любой поверхности i в помещении может быть представлен на основе закона сохранения энергии уравнением:

где Лучистая Лi, конвективная Кi, Тi кондуктивная, составляющие теплообмена на поверхности.

Влага воздуха помещения

При расчете влагопередачи через ограждения необходимо знать влажностное состояние воздуха в помещении, определяемое выделением влаги и воздухообменом. Источниками влаги в жилых помещениях являются бытовые процессы (приготовление пищи, мытье полов и пр.), в общественных зданиях - находящиеся в них люди, в промышленных зданиях - технологические процессы.

Количество влаги в воздухе определяется eгo влагосодержание d, г влаги на 1 кг сухой части влажного воздуха. Кроме тoгo, eгo влажностное состояние характеризуется упругостью или парциальным давлением водяных паров е, Па, или относительной влажностью водяных паров φ, %,

Е- максимальная упругость при данной температуре.

Воздух обладает определенной влагоудерживающей способностью.

Чем суше воздух, тем с большей силой удерживается в нём водяной пар. Упругость водяного пара е отражает свободную энергию влаги в воздухе и возрастает от 0 (сухой воздух) до максимальной упругости Е , соответствующей полному насыщению воздуха.

Диффузия влаги происходит в воздухе от мест с большей упругостью водяных паров к местам с меньшей упругостью.

η возд = ∆d /∆е.

Упругость полного насыщения воздуха Е, Па, зависит от температуры t нас и с ее возрастанием увеличивается. Величина Е определяется:

Если необходимо знать температуру t нас, которой соответствует то или иное значение Е, можно определить:

Воздушный режим здания

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми eгo помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха.

Воздухообмен в здании происходит под действием естественных сил и работы искусственных побудителей движения воздуха. Наружный воздух поступает в помещения через неплотности ограждений или по каналам приточных вентиляционных систем. Внутри здания воздух может перетекать между помещениями через двери и неплотности во внутренних конструкциях. Внутренний воздух удаляется из помещений за пределы здания через неплотности наружных ограждений и по вентиляционным каналам вытяжных систем.

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления.

Расчётная разность давлений:

1-ая часть-гравитационное давление, 2-ая-часть ветровое давление.

где Н-высота здания от поверхности земли до верха карниза.

Max из средних скоростей по румбам за январь.

С н,С п -аэродинамические коэффициенты с подветренной и наветренной поверхностей ограждения здания.

К i -коэф. учёта изменения скоростного давления ветра.

Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений. Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам теплоты на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений. Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции (массив, стык панелей, окна, воздушные прослойки). Так, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.

Инфильтрация-проникновение воздуха в помещение.

Эксфильтрация-уход воздуха из помещения.

Предмет строительной теплофизики

Строительная теплофизика – наука, изучающая проблемы теплового, воздушного и влажностного состояний внутренней среды и ограждающих конструкций зданий любого назначения и занимающаяся вопросами создания микроклимата в помещениях, применяя системы кондиционирования (отопления –охлаждения и вентиляции) с учетом влияния наружного климата через ограждения.

Для понимания формирования микроклимата и определения возможных способов воздействия на него необходимо знать законы лучистого, конвективного и струйного теплообмена в помещении, уравнения общего теплообмена поверхностей помещения и уравнение теплообмена воздуха. На основе закономерностей теплообмена человека с окружающей средой формируются условия теплового комфорта в помещении.

Основное сопротивление потере теплоты из помещения оказывают теплозащитные свойства материалов ограждения, поэтому закономерности процесса теплопередачи через ограждения являются важнейшими при расчете системы отопления помещений. Влажностный режим ограждения является одним из основных при расчете теплопередачи, поскольку переувлажнение приводит к заметному снижению теплозащитных свойств и долговечности конструкции.

С тепловым режимом здания тесно связан и воздушный режим ограждений, поскольку инфильтрация наружного воздуха требует затрат теплоты на его подогрев, а эксфильтрация влажного внутреннего воздуха увлажняет материал ограждений.

Изучение выше рассмотренных вопросов позволят решать задачи создания микроклимата в зданиях в условиях эффективного и экономного расходования топливно-энергетических ресурсов.

Тепловой режим здания

Тепловым режимом здания называется совокупность всех факторов и процессов, определяющих тепловую обстановку в его помещениях.

Совокупность всех инженерных средств и устройств, обеспечивающих заданные условия микроклимата в помещениях здания, называют системой кондиционирования микроклимата (СКМ).

Под действием разности наружной и внутренней температур, солнечной радиации и ветра помещение теряет теплоту через ограждения зимой и нагревается летом. Гравитационные силы, действие ветра и вентиляция создают перепады давлений, приводящие к перетеканию воздуха между сообщающимися помещениями и к его фильтрации через поры материала и неплотности ограждений.

Атмосферные осадки, влаговыделения в помещениях, разность влажности внутреннего и наружного воздуха приводят к влагообмену в помещении, через ограждения, под влиянием которого возможно увлажнение материалов и ухудшение защитных свойств и долговечности наружных стен и покрытий.

Процессы, формирующие тепловую обстановку помещения, необходимо рассматривать в неразрывной связи между собой, так как их взаимное влияние может оказаться весьма существенным.

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. В отоплении рассматривается тепловой режим здания. Эти два режима, а также влажностный режим тесно связаны между собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Краевая задача воздушного режима объединяет следующие вопросы:

а) определение количества воздуха, проходящего через наружные (инфильтрация и эксфильтрация) и внутренние (перетекание) ограждения. Инфильтрация приводит к увеличению теплопотерь помещений. Наибольшая инфильтрация наблюдается в нижних этажах многоэтажных зданий и в высоких производственных помещениях. Неорганизованное перетекание воздуха между помещениями приводит к загрязнению чистых помещений и распространению по зданию неприятных запахов;

б) расчет площадей отверстий для аэрации;

в) расчет размеров каналов, воздуховодов, шахт и других элементов систем вентиляции;

г) выбор способа обработки воздуха - придание ему определенных «кондиций»: для притока - это нагрев (охлаждение), увлажнение (осушка), очистка от пыли, озонирование; для вытяжки - это очистка от пыли и вредных газов;

д) разработка мероприятий по защите помещений от врывания холодного наружного воздуха через открытые проемы (наружные двери, ворота, технологические отверстия). Для защиты обычно применяют воздушные и воздушно-тепловые завесы.

Внешняя задача воздушного режима включает следующие вопросы:

а) определение давления, создаваемого ветром, на здание и отдельные его элементы (например, дефлектор, фонарь, фасады и т. д.);

б) расчет максимально возможного количества выбросов, не приводящего к загрязнению территории промышленных предприятий; определение проветриваемости пространства вблизи здания и между отдельными зданиями на промышленной площадке;

в) выбор мест расположения воздухозаборов и вытяжных шахт вентиляционных систем;

г) расчет и прогнозирование загрязнения атмосферы вредными выбросами; проверка достаточности степени очистки выбрасываемого загрязненного воздуха.

Главная особенность воздушного режима здания - объединение всех помещений и систем здания в единую технологич. систему...

Правовой режим воздушного пространства определяется в той или иной степени правовым режимом территории, над которой оно расположено.

Правовой режим воздушного пространства РФ регламентируется большим числом внутригосударственных актов...

Тепловой режим здания. Тепловым режимом здания называется...
...система управления тепловым и воздушным режимами ...

Правовой режим воздушного пространства государства определяется национальным законодательством.

Логическую основу АСУ составляет математическую модель теплового и воздушного режимов здания, реализуемая на мини-ЭВМ.

Возможности управления тепловыми и воздушными режимами здания с помощью изменяемых конструктивных характеристик здания ограничены, поэтому осн...

§ 4. Режим полетов в международном воздушном пространстве. Открытое воздушное пространство - это пространство над открытым морем и иными территориями с особым...

Правовой режим воздушного ...
Воздушный кодекс РФ закрепляет принцип ответственности перевозчика перед пассажиром воздушного судна и грузовладельцем.

Воздушные завесы периодического действия рассчитывают так, чтобы ее работа не влияла на тепловой и воздушный режимы помещения, т.е. чтобы воздух, забираемый В.з. из...