Создание охранной сигнализации с датчиком движения на базе Arduino и инфракрасных датчиков. Про датчик движения и подключение его к Arduino Gsm датчик движения на ардуино скетч

Сегодня речь пойдет о том, как с помощью Ардуино собрать охранную систему . Наша «охрана» будет сторожить один контур и управлять одним оповещателем.

Для Ардуино это не проблема, и, как вы увидите по коду программы и по схеме устройства, можно легко увеличить количество охраняемых точек доступа и количество устройств оповещения или индикации.
Охранную систему можно применить для охраны как больших объектов (зданий и сооружений), так и небольших предметов (шкатулок, сейфов), и даже переносных кейсов и чемоданов. Хотя с последними надо быть поосторожнее, если вы установите систему охраны, например, на чемодан, с которым решите отправиться в путешествие, и система оповещения сработает в каком-нибудь аэропорту, то, думаю, вам предстоит серьезная беседа с местной службой безопасности:-)

Упрощенно принцип работы устройства выглядит следующим образом (рис. 1). После включения питания устройство переходит в рабочий режим и ждет постановки на охрану. Постановка и снятие с охраны осуществляются одной кнопкой. Для повышения безопасности эту кнопку лучше расположить внутри охраняемого помещения (сейфа или шкатулки). Перед включением режима охраны дверь нужно приоткрыть. При включении режима охраны (нажатии на кнопку) электронная схема ждет, пока вы не закроете дверь в помещение (дверцу сейфа, крышку шкатулки, и т.д.).

На двери (или дверце) должен быть установлен концевой выключатель любого типа, об этом позднее. Замыкаясь (или размыкаясь), концевой выключатель сообщит устройству, что охраняемый контур замкнут, и устройство перейдет в режим охраны. О переходе в режим охраны система оповестит двумя короткими сигналами (как в автомобильных сигнализациях). В этом режиме устройство «ловит» открытие двери. После открытия двери система ждет несколько секунд (это величина настраиваемая, для помещений около десяти секунд, для шкатулки одна-две) отключения режима охраны, если этого не происходит, включается сирена. Алгоритм и схема разработаны так, что отключить сирену можно, только полностью разобрав корпус и отключив питание.

Устройство охранной системы очень простое (рис. 2). В основе плата Ардуино . Концевые выключатели подключаются, как обычная кнопка, через подтягивающие резисторы. На концевиках остановлюсь отдельно. Они бывают нормально замкнутые и нормально разомкнутые. Можно в качестве концевика включить обычную кнопку, только ход обычной кнопки очень велик, люфт двери обычно больше. Поэтому необходимо придумать какой-нибудь толкатель для кнопки и подпружинить, чтобы не сломать кнопку дверью. Ну и если не лень, то можно дойти до магазина и купить магнитный выключатель (геркон) (рис. 3), он не боится пыли и загрязнений.

Подойдет и концевой выключатель для автосигнализации (рис. 4). Следует отметить, программа написана под геркон. При закрытой двери его контакт замкнут. Если использовать выключатель от автосигнализации, то при закрытой двери он будет скорее всего разомкнут, и в соответствующих местах кода нужно будет поменять 0 на 1 и наоборот.

В качестве сирены предлагаю использовать оповещатель звуковой ПКИ-1 ИВОЛГА белорусского производства (рис. 5). Напряжение питания 9 - 15 В, рабочий ток 20 - 30 мА. Это позволяет использовать его с батарейным питанием. При этом он «выдает» 95 - 105 дБ.

При таких характеристиках от батарейки «Крона» он будет звучать несколько десятков минут. Я его нашел в интернете за 110 руб. Там же геркон с магнитом стоит около 30 руб. Выключатель от автосигнализации в автозапчастях был куплен за 28 руб. Транзистор КТ315 можно взять с любой буквой или заменить на любой современный маломощный кремниевый транзистор соответствующей проводимости. Если громкости одного оповещателя не хватит (кто знает, может, вы захотите, чтобы было слышно за многие километры), можно подключить несколько оповещателей параллельно или взять более мощный, только в этом случае и транзистор нужно заменить на более мощный (например, знакомую нам транзисторную сборку ULN2003). В качестве разъемов для подключения геркона и сирены я применил самые простые разъемы для аудио/видеоустройств - цена на радиорынке 5 руб. за пару.

Корпус устройства можно склеить из пластика или фанеры; если охраняется серьезный объект, то его лучше сделать металлическим. Батареи или аккумуляторы питания для повышения надежности и безопасности желательно разместить внутри корпуса.

Для упрощения программного кода не были использованы элементы энергосбережения, и батареек надолго не хватает. Можно оптимизировать код, а еще лучше радикально переделать, применив обработку событий по прерываниям и спящий режим МК. В этом случае питания от двух квадратных батареек, включенных последовательно (9 В), должно хватить на несколько месяцев.

Теперь код

// постоянные
const int button = 12; // пин для кнопки
const int gerkon = 3; // пин для геркона
const int sirena = 2; // пин упр-ния сиреной
const int led = 13; // пин индикатора
// переменные
int buttonState = 0; // состояние кнопки
int gerkonState = 0; // состояние геркона
int N = 0; // счетчик кнопки отключения охраны
void setup() {
// управление сиреной и индикатором - выход
pinMode(sirena, OUTPUT);
pinMode(led, OUTPUT); // кнопка и геркон - входы
pinMode(gerkon, INPUT);
pinMode(button, INPUT);
}
void loop(){
digitalWrite(led, HIGH);
while(buttonState= =0){ // цикл ожидания, пока не нажмем кнопку
buttonState = digitalRead(button); // для перехода в режим охраны
}
digitalWrite(led, LOW);
buttonState = 0; // обнуляем значение кнопки
while(gerkonState= =0){ // цикл, пока не закроем дверь

}
delay (500); // :-)
digitalWrite(sirena, HIGH); // Код
delay (100); // индикации
digitalWrite(sirena, LOW); // включения
delay (70); // режима
digitalWrite(sirena, HIGH); // охраны
delay (100); // оповещение
digitalWrite(sirena, LOW); // звуковое
while(gerkonState= =1){ // ждем открытия двери
gerkonState = digitalRead(gerkon);
}
for (int i=0; i <= 5; i++){ // 7,5 секунды на нажатие
buttonState = digitalRead(button); // секретной кнопки
if (buttonState = = HIGH) { // отслеживаем свой - чужой
N=N+1;
}
delay(1500); // секретная фича:-)))
}
if (N > 0) { // самое главное
digitalWrite(sirena, LOW); // не включаем сирену
}
else {
digitalWrite(sirena, HIGH); // или включаем сирену
}
digitalWrite(led, HIGH); // включаем индикатор N = 0;
buttonState = 0;
delay(15000); // напоминание «чайникам», которым нравится
digitalWrite(led, LOW); // давить на кнопки без перерыва delay (1000);

Кражи автомобилей на протяжении последнего десятилетия занимают одно из значимых мест в структуре совершаемых в мире преступлений. Это обусловлено не столько удельным весом данной категории хищений относительно общего количества преступлений, сколько существенностью причиняемого ущерба ввиду большой стоимости автомобилей. Слабая эффективность принимаемых мер в области борьбы с кражами автотранспорта к концу 90-х годов привела к созданию устойчивых групп, специализирующихся на совершении данных преступлений и обладающих отличительными чертами организованной преступности; вы наверняка слышали термин «черный автобизнес». Автомобильный парк европейских государств ежегодно не досчитывается ≈ 2 % машин, которые становятся предметом преступных посягательств. Поэтому мне пришла идея сделать gsm-сигнализацию для своего автомобиля на базе Arduino Uno.

Начнём!

Из чего будем собирать

Надо выбрать сердце нашей системе. На мой взгляд, для подобной сигнализации нет ничего лучше, чем Arduino Uno. Основной критерий - достаточное количество «пинов» и цена.


Основные характеристики Arduino Uno

Микроконтроллер - ATmega328
Рабочее напряжение - 5 В
Входное напряжение (рекомендуемое) - 7-12 В
Входное напряжение (предельное) - 6-20 В
Цифровые Входы/Выходы - 14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы - 6
Постоянный ток через вход/выход - 40 мА
Постоянный ток для вывода 3.3 В - 50 мА
Флеш-память - 32 Кб (ATmega328) из которых 0.5 Кб используются для загрузчика
ОЗУ - 2 Кб (ATmega328)
EEPROM - 1 Кб (ATmega328)
Тактовая частота - 16 МГц


Подходит!

Теперь необходимо выбрать gsm-модуль, ведь наша сигнализация должна уметь оповещать владельца автомобиля. Так, надо «погуглить»… Вот, отличный датчик - SIM800L, размер просто замечательный.


Подумал я и заказал его из Китая. Однако всё оказалось не так радужно. Датчик просто отказался регистрировать SIM-карту в сети. Было опробовано всё, что только возможно - результат нулевой.
Нашлись добрые люди, которые предоставили мне более крутую штуку - Sim900 Shield. Вот это уже серьёзный штучка. В Shield-е и разъём для микрофона и для наушников, полноценный телефон.


Основные характеристики Sim900 Shield

4 стандарта рабочей частоты 850/ 900/ 1800/ 1900 MHz
GPRS multi-slot класс 10/8
GPRS mobile station class B
Соответствует GSM phase 2/2+
Class 4 (2 W @850/ 900 MHz)
Class 1 (1 W @ 1800/1900MHz)
Управление с помощью AT команд (GSM 07.07 ,07.05 и SIMCOM расширенные AT команды)
Низкое энергопотребление: 1.5mA(sleep mode)
Диапазон рабочих температур: от -40°C до +85 °C


Подходит!

Ок, но надо же снимать показания с каких-то датчиков, чтобы оповещать владельца. Вдруг автомобиль эвакуируют, тогда положение автомобиля явно будет меняться в пространстве. Возьмём акселерометр и гироскоп. Отлично. Такс, теперь ищем датчик.

Думаю, что GY-521 MPU6050 точно подойдёт. Оказалось, что в нём есть и датчик температуры. Надо бы и его задействовать, будет такая «киллер фича». Предположим, что владелец автомобиля поставил его под домой и ушёл. Температура в салоне автомобиля будет изменяется «плавно». Что же будет, если злоумышленник попытается проникнуть в автомобиль? Например у него получится открыть дверь. Температура в автомобиле начнёт изменяться стремительно, так как воздух в салоне начнёт смешиваться с воздухом окружающей среды. Думаю, что будет работать.


Основные характеристики GY-521 MPU6050

Модуль 3-х осевого гироскопа + 3-х осевого акселерометра GY-521 на чипе MPU-6050. Позволяет определить положение и перемещение объекта в пространстве, угловую скорость при вращении. Так же имеет встроенный датчик температуры. Используется в различных коптерах и авиамоделях, так же на основе этих датчиков можно собрать систему захвата движений.

Микросхема - MPU-6050
Напряжение питания - от 3,5V до 6V (DC);
Диапазон гироскопа - ± 250 500 1000 2000 ° / с
Диапазон акселерометра - ± 2 ± 4 ± 8 ± 16g
Интерфейс связи - I2C
Размер - 15х20 мм.
Вес - 5 г


Подходит!

Также пригодится датчик вибраций. Вдруг автомобиль попытаются вскрыть «грубой силой», ну или на парковке другой автомобиль заденет вашу машинку. Возьмём датчик вибраций SW-420 (регулируемый).


Основные характеристики SW-420

Напряжение питания - 3.3 - 5В
Выходной сигнал - цифровой High/Low (нормально закрытый)
Используемый датчик - SW-420
Используемый компаратор - LM393
Размеры - 32x14 мм
Дополнительно - Есть регулировочный резистор.


Подходит!

Прикрутим модуль SD карты памяти. Будем ещё писать лог-файл.


Основные характеристики модуля SD карты памяти

Модуль позволяет хранить, читать и записывать на SD карту данные требуемые для работы прибора на основе микроконтроллера. Применение устройства актуально при хранении файлов от десятков мегабайт до двух гигабайт. На плате размещен контейнер SD карты, стабилизатор питания карты, вилка соединителя линий интерфейса и питания. Если требуется работать с звуковыми, видео или другими объемными данными, например, вести журнал регистрации событий, данных датчиков или хранить информацию веб-сервера, то модуль SD карты памяти для Arduino даст возможность применить SD карту для этих целей. С помощью модуля можно изучить особенности работы SD карты.
Напряжение питания - 5 или 3,3 В
Объем памяти SD карты - до 2 Гбайт
Размеры - 46 х 30 мм


Подходит!

И добавим сервопривод, при срабатывании датчиков будет поворачиваться сервопривод с видеорегистратором и снимать видео происшествия. Возьмём сервопривод MG996R.


Основные характеристики сервопривода MG996R

Стабильная и надежная защита от повреждений
- Металлический привод
- Двухрядный шарикоподшипник
- Длина провода 300 мм
- Размеры 40х19х43мм
- Масса 55 гр
- Угол поворота: 120 град.
- Рабочая скорость: 0.17сек/60 градусов (4.8В без нагрузки)
- Рабочая скорость: 0.13сек/60 градусов (6В без нагрузки)
- Пусковой момент: 9.4кг/см при питании 4.8В
- Пусковой момент: 11кг/см при питании 6В
- Рабочее напряжение: 4.8 - 7.2В
- Все детали привода выполнены из металла


Подходит!

Собираем

Про подключение каждого датчика в «гугле» огромное количество статей. И придумывать новые велосипеды у меня желания нет, поэтому оставлю ссылки на простые и рабочие варианты.

Всем привет, сегодня мы рассмотрим устройство под названием датчик движения. Многие из нас слышали об этой штуке, кто то даже имел дело с этим устройством. Что же такое датчик движения? Попробуем разобраться, итак:

Датчик движения, или датчик перемещения - устройство (прибор) обнаруживающий перемещение каких либо объектов. Очень часто эти устройства, используются в системах охраны, сигнализации и мониторинга. Форм факторов этих датчиков существует великое множество, но мы рассмотрим именно модуль датчика движения для подключения к платам Arduino, и именно от фирмы RobotDyn. Почему именно этой фирмы? Я не хочу заниматься рекламой этого магазина и его продукции, но именно продукция данного магазина была выбрана в качестве лабораторных образцов благодаря качественной подаче своих изделий для конечного потребителя. Итак, встречаем - датчик движения (PIR Sensor) от фирмы RobotDyn:


Эти датчики малы по габаритам, потребляют мало энергии и просты в использовании. Кроме того - датчики движения фирмы RobotDyn имеют еще и маркированные шелкографией контакты, это конечно мелочь, но очень приятная. Ну а тем кто использует такие же датчики, но только других фирм, не стоит беспокоиться - все они имеют одинаковый функционал, и даже если не промаркированы контакты, то цоколёвку таких датчиков легко найти в интернете.

Основные технические характеристики датчика движения(PIR Sensor):

Зона работы датчика: от 3 до 7 метров

Угол слежения: до 110 о

Рабочее напряжение: 4,5...6 Вольт

Потребляемый ток: до 50мкА

Примечание: Стандартный функционал датчика можно расширить, подключив на пины IN и GND датчик освещенности, и тогда датчик движения будет срабатывать только в темноте.

Инициализация устройства.

При включении, датчику требуется почти минута для инициализации. В течение этого периода, датчик может давать ложные сигналы, это следует учесть при программировании микроконтроллера с подключенным к нему датчиком, или в цепях исполнительных устройств, если подключение производится без использования микроконтроллера.

Угол и область обнаружения.

Угол обнаружения(слежения) составляет 110 градусов, диапазон расстояния обнаружения от 3 до 7 метров, иллюстрация ниже показывает всё это:

Регулировка чувствительности(дистанции обнаружения) и временной задержки.

На приведённой ниже таблице показаны основные регулировки датчика движения, слева находится регулятор временной задержки соответственно в левом столбце приведено описание возможных настроек. В правом столбце описание регулировок расстояния обнаружения.


Подключение датчика:

  • PIR Sensor - Arduino Nano
  • PIR Sensor - Arduino Nano
  • PIR Sensor - Arduino Nano
  • PIR Sensor - для датчика освещенности
  • PIR Sensor - для датчика освещенности

Типичная схема подключения дана на схеме ниже, в нашем случае датчик показан условно с тыльной стороны и подключен к плате Arduino Nano.

Скетч демонстрирующий работу датчика движения(используем программу ):

/* * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano */ void setup() { //Установить соединение с монитором порта Serial.begin(9600); } void loop() { //Считываем пороговое значение с порта А0 //обычно оно выше 500 если есть сигнал if(analogRead(A0) > 500) { //Сигнал с датчика движения Serial.println("Есть движение!!!"); } else { //Нет сигнала Serial.println("Всё тихо..."); } }

Скетч является обычной проверкой работы датчика движения, в нём есть много недостатков, таких как:

  1. Возможные ложные срабатывания, датчику необходима самоинициализация в течение одной минуты.
  2. Жесткая привязка к монитору порта, нет выходных исполнительных устройств(реле, сирена, светоиндикация)
  3. Слишком короткое время сигнала на выходе датчика, при обнаружении движения необходимо программно задержать сигнал на более долгий период времени.

Усложнив схему и расширив функционал датчика, можно избежать вышеописанных недостатков. Для этого потребуется дополнить схему модулем реле и подключить обычную лампу на 220 вольт через данный модуль. Сам же модуль реле будет подключен к пину 3 на плате Arduino Nano. Итак принципиальная схема:

Теперь пришло время немного усовершенствовать скетч, которым проверялся датчик движения. Именно в скетче, будет реализована задержка выключения реле, так как сам датчик движения имеет слишком короткое время сигнала на выходе при срабатывании. Программа реализует 10-ти секундную задержку при срабатывании датчика. При желании это время можно увеличить или уменьшить, изменив значение переменной DelayValue . Ниже представлен скетч и видео работы всей собранной схемы:

/* * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * Relay Module -> Arduino Nano */ //relout - пин(выходной сигнал) для модуля реле const int relout = 3; //prevMillis - переменная для хранения времени предидущего цикла сканирования программы //interval - временной интервал для отсчета секунд до выключения реле unsigned long prevMillis = 0; int interval = 1000; //DelayValue - период в течение которого реле удерживается во включенном состоянии int DelayValue = 10; //initSecond - Переменная итерации цикла инициализации int initSecond = 60; //countDelayOff - счетчик временных интервалов static int countDelayOff = 0; //trigger - флаг срабатывания датчика движения static bool trigger = false; void setup() { //Стандартная процедура инициализации порта на который подключен модуль реле //ВАЖНО!!! - чтобы модуль реле оставался в первоначально выключенном состоянии //и не срабатывал при инициализации, нужно записать в порт входа/выхода //значение HIGH, это позволит избежать ложных "перещелкиваний", и сохранит //состояние реле таким, каким оно было до включения всей схемы в работу pinMode(relout, OUTPUT); digitalWrite(relout, HIGH); //Здесь всё просто - ждем когда закончатся 60 циклов(переменная initSecond) //продолжительностью в 1 секунду, за это время датчик "самоинициализируется" for(int i = 0; i < initSecond; i ++) { delay(1000); } } void loop() { //Считать значение с аналогового порта А0 //Если значение выше 500 if(analogRead(A0) > 500) { //Установить флаг срабатывания датчика движения if(!trigger) { trigger = true; } } //Пока флаг срабатывания датчика движения установлен while(trigger) { //Выполнять следующие инструкции //Сохранить в переменной currMillis //значение миллисекунд прошедших с момента начала //выполнения программы unsigned long currMillis = millis(); //Сравниваем с предидущим значением миллисекунд //если разница больше заданного интервала, то: if(currMillis - prevMillis > interval) { //Сохранить текущее значение миллисекунд в переменную prevMillis prevMillis = currMillis; //Проверяем счетчик задержки сравнивая его со значением периода //в течение которого реле должно удерживаться во включенном //состоянии if(countDelayOff >= DelayValue) { //Если значение сравнялось, то: //сбросить флаг срабатывания датчика движения trigger = false; //Обнулить счетчик задержки countDelayOff = 0; //Выключить реле digitalWrite(relout, HIGH); //Прервать цикл break; } else { //Если значение всё еще меньше, то //Инкрементировать счетчик задержки на единицу countDelayOff ++; //Удерживать реле во включенном состоянии digitalWrite(relout, LOW); } } } }

В программе присутствует конструкция:

unsigned long prevMillis = 0;

int interval = 1000;

...

unsigned long currMillis = millis();

if(currMillis - prevMillis > interval)

{

prevMillis = currMillis;

....

// Наши операции заключенные в тело конструкции

....

}

Чтобы внести ясность, было решено отдельно прокомментировать эту конструкцию. Итак, данная конструкция позволяет выполнить как бы параллельную задачу в программе. Тело конструкции срабатывает примерно раз в секунду, этому способствует переменная interval . Сначала, переменной currMillis присваивается значение возвращаемое при вызове функции millis() . Функция millis() возвращает количество миллисекунд прошедших с начала программы. Если разница currMillis - prevMillis больше чем значение переменной interval то это означает, что уже прошло более секунды с начала выполнения программы, и нужно сохранить значение переменной currMillis в переменную prevMillis затем выполнить операции заключенные в теле конструкции. Если же разница currMillis - prevMillis меньше чем значение переменной interval , то между циклами сканирования программы еще не прошло секунды, и операции заключенные в теле конструкции пропускаются.

Ну и в завершение статьи видео от автора:

Пожалуйста, включите javascript для работы комментариев.

Данный проект касается разработки и усовершенствования системы для предотвращения/контроля любых попыток проникновения воров. Разработанное охранное устройство использует встроенную систему (включает аппаратный микроконтроллер с использованием открытого программного кода и gsm модем) на базе технологии GSM (Глобальная система подвижной связи).

Охранное устройство может быть установлено в доме. Интерфейсный датчик охранной сигнализации также подсоединен к охранной системе на базе контроллера.
При попытке проникновения система передает предупреждающее сообщение (например, sms) владельцу на мобильный телефон или на любой заранее сконфигурированный мобильный телефон для дальнейшей обработки.

Охранная система состоит из микроконтроллера Arduino Uno и стандартного модема SIM900A на базе GSM/GPRS. Вся система может питаться от любого источника питания/батареи 12В 2A.

Ниже показана схема охранной системы на базе Arduino.

Работа системы очень проста и не требует разъяснений. Когда на систему подается питание, она переходит в дежурный режим. Когда выводы коннектора J2 закорочены, заранее запрограммированное предупреждающее сообщение передается на требуемый мобильный номер. Вы можете подсоединить любой детектор обнаружения проникновения (такой как световое защитное приспособление или датчик движения) к входному коннектору J2. Заметьте, что активный-низкий (L) сигнал на выводе 1 коннектора J2 активирует срабатывание охранной сигнализации.

Более того, в систему добавлено опциональное приспособление “вызов – тревога”. Оно активирует телефонный звонок, когда пользователь нажмет кнопку S2 (или когда другой электронный блок инициирует сигнализацию). После нажатия кнопки “call” (S2), вызов можно отменить, нажав другую кнопку S3 – кнопку “end”. Данная опция может использоваться для подачи сигнала тревоги в случае “пропущенного звонка” в случае проникновения.

Схема очень гибкая, поэтому может использовать любой SIM900A модем (и, конечно, плату Arduino Uno). Внимательно прочтите документацию на модем до начала сборки. Это позволит облегчить и сделать приятным процесс изготовления системы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Плата Arduino

Arduino Uno

1 В блокнот
GSM/GPRS-модем SIM900A 1 В блокнот
IC1 Линейный регулятор

LM7805

1 В блокнот
C1 100мкФ 25В 1 В блокнот
C2 Электролитический конденсатор 10мкФ 16В 1 В блокнот
R1 Резистор

1 кОм

1 В блокнот
LED1 Светодиод 1 В блокнот
S1 Кнопка С фиксацией 1

GSM сигнализация на Arduino

В этой статье вы узнаете как (купить) сделать самому GSM сигнализацию с помощью GSM модуля и Arduino очень дешево. Обьектом охраны GSM сигнализации идеально подойдет дача, дом, гараж, квартира.


Шаг 1: Элементы
Для этого проекта вам понадобится:


GSM Shield

Зуммер
Сирена сигнализации 12V
12V источник питания

Клавиатура для Arduino
Корпус.

Шаг 2: Подключение компонентов


Сначала вы поместите GSM модуль на Arduino Uno, вам нужно будет припаять провода GND и VCC вместе с двумя датчиками, зуммером и входом модуля реле. После этого соединить эти припаяные провода на соответствующий разъем GSM шилда. Далее вы будете делать разъем ввода / вывода сигналов из этих частей, и последнее, что нужно будет - это подключить клавиатуру

Arduino Uno / GSM Клеммы:

Вывод 0: не связанный;
Вывод 1: не связанный;
Вывод 2: несвязанный (GSM будет использовать этот штырь);
Вывод 3: несвязанный (GSM будет использовать этот штырь);
Вывод 4: последняя строка с помощью клавиатуры (контакт клавиатуры 4 - от 8);
Вывод 5: не связанный;
Вывод 6: второй столбец с помощью клавиатуры (контакт клавиатуры 6 - с 8);
Вывод 7: третья колонка с клавиатуры (клавиатуры пальца 7 - от 8);
Вывод 8: несвязанный (GSM будет использовать этот штырь);
Вывод 9: несвязанный (GSM будет использовать этот штырь);
Вывод 10: данные PIR датчика № 2;
Вывод 11: сирена звуковой сигнал (поступает на вход модуля реле);
Вывод 12: данные PIR датчика № 1;
Вывод 13: входной сигнал зуммера;

Как можно видеть, хотя клавиатура имеет 8 выводов, подключились только три (одна строка и две колонки, что позволяет использовать два числа для чтения - 1 × 2 матрицы), таким образом я могу сделать пароли, используя эти три провода, и нет необходимости использовать все контакты с клавиатуры. Это происходит потому, что после того, как датчик движения обнаруживает человека, идущего в комнате, человек будет иметь всего 5 секунд, чтобы отключить сигнализацию. После того, как аварийный сигнал не отключается на данный момент времени, GSM шилд отправляет SMS вам, или звонит на номер телефона. Arduino был запрограммирован на вызов и как только вы ответить на телефонный звонок, он положит трубку.

Конечно, можно получить ложные показания датчика, поэтому стоит опция, чтобы отключить сигнализацию, просто отправив СМС с вашего телефона на Arduino. Кроме того, еще один вариант, что вы можете сделать, это настроить шилд, чтобы он отправлял вам одно сообщение в день, чтобы вы знали, что он работает правильно.

Шаг 3: Код

Просто загрузите приведенный ниже код и скомпилируйте. Он использует библиотеки Keypad.h и GSM.h.
Скачать файл: (cкачиваний: 181)
Скачать файл: (cкачиваний: 104)

Шаг 4: Заключение


Учитывая, что код Arduino Uno будет отправлять SMS-сообщения и звонить на ваш телефон всего за пять секунд после того, как кто-то проникнуть в ваш дом, я предполагаю, что у вас будет достаточно времени, чтобы позвонить в полицию. Конечно сирена будет отпугивать воров и ваш дом или другое помещение станет безопаснее с помощью этой статьи.