Виды стропильной системы двухскатной крыши: для маленьких и больших домов. Сращивание стропил в районе конька: обзор технологии для всех видов крыш Сбор нагрузки на коньковый брус

Обязательное условие установки наслонных стропил - обеспечение их верхней части опорой. В односкатных крышах этот вопрос решается просто: стены строятся разной высоты, на них укладываются мауэрлатные балки, на которые в свою очередь настилаются стропила.

В двухскатной крыше можно поступить, также: выстроить внутреннюю стену на требуемую высоту и уложить на нее мауэрлат. Затем на низкие внешние и высокую внутреннюю стены разложить стропила. Однако это решение ограничивает варианты планировок чердачного помещения, которое все чаще используют как мансарду. Да и для обычных чердачных крыш, этот вариант не выгоден, т.к. требует значительных финансовых затрат на возведение высокой внутренней капитальной стены. Поэтому на чердаке внутреннюю стену заменяют горизонтальной балкой установленной на подпорках или опертой на противостоящие друг другу фронтоны стен. Горизонтальную балку, уложенную на крыше, называют прогоном.

Само название: прогон, говорит о том, что эта балка «прокинута» от стены до стены, хотя на самом деле, например, в вальмовых крышах он может быть короче. Самое простое конструкторское решение по установке конькового прогона, это уложить мощную балку на фронтоны стен без каких-либо дополнительных подпорок (рис 24.1).

рис. 24.1. Пример установки конькового прогона, без дополнительных опор, на стены мансарды.

При этом для расчета сечений прогонов нагрузка, действующая на них должна собираться с половины горизонтальной проекции площади крыши.

В зданиях с большими размерами прогоны получаются длинными и тяжелыми, скорее всего, их придется монтировать подъемным краном. Для изготовления прогона найти ровный брус из цельного дерева длиной более 6 м довольно проблематично, поэтому для этих целей лучше использовать клееную балку или бревно. В любом случае, концы прогонов, замуровываемые в стены фронтонов, нужно обработать антисептиками и завернуть в рулонный гидроизоляционный материал. Торцы цельнодеревянных балок скашивают под углом примерно 60° и оставляют открытыми, в нише они не должны упираться в материал стены (рис. 25). Скашивание конца балки увеличивает площадь торца и благоприятствует лучшему влагообмену всей балки. Если прогон проходит сквозь стену, то в месте опирания на стену, его тоже обматывают гидроизоляционным материалом. Балки пропускают сквозь стены из архитектурных соображений затем, чтобы обеспечить свес кровли над фронтонами, хотя его можно достичь и выносом за стену обрешетки. Прогоны, пропущенные через стену образуют разгружающие консоли. Нагрузка давящая на консоли старается выгнуть прогон вверх, а нагрузка действующая на пролете - вниз. Таким образом, общий прогиб прогона в середине пролета становится меньше (рис. 24.2).

Рис. 24. 2. Прогон с консолями.

Если использовать в качестве прогона бревно, то его не обязательно отесывать на два канта, достаточно подтесать в месте опирания стропил и в месте опирания прогона на стены. Длинные прогоны нецелесообразно делать цельнодеревянными, проходящие по расчету на прочность и прогиб они, тем не менее, могут прогнуться под собственным весом. Их лучше заменять строительными фермами.

Сечение прогона подбирается по расчету по первому и второму предельному состоянию - на разрушение и на прогиб. Балка, работающая на изгиб должна отвечать следующим условиям.

1. Внутреннее напряжение, возникающее в ней при изгибе от приложения внешней нагрузки, не должно превышать расчетного сопротивления древесины на изгиб:

σ = М/W ≤ Rизг, (1)

где σ - внутреннее напряжение, кг/см²; М - максимальный изгибающий момент, кг×м (кг×100см); W - момент сопротивления сечения стропильной ноги изгибу W = bh²/6, см³; Rизг - расчетное сопротивление древесины изгибу, кг/см² (принимается по таблице СНиП II-25-80 «Деревянные конструкции» или по таблице);

2. Величина прогиба балки не должна превышать нормируемого прогиба:

f = 5qL³L/384EJ ≤ fнор, (2)

где Е - модуль упругости древесины, для ели и сосны он составляет 100 000 кг/см²; J - момент инерции (мера инертности тела при изгибе), для прямоугольного сечения равный bh³/12 (b и h - ширина и высота сечения балки), см4; fнор - нормируемый прогиб балки, для всех элементов крыши (стропил, прогонов и брусков обрешетки) он составляет L/200 (1/200 длины проверяемого пролета балки L), см.

Сначала просчитываются изгибающие моменты М (кг×см). Если на расчетной схеме изображено несколько моментов, то просчитываются все и выбирается наибольший. Далее путем несложных математических преобразований формулы (1), которые мы опускаем, получаем, что размеры сечения балки можно найти, задавшись одним из его параметров. Например, произвольно задавая толщину бруса, из которого будет изготовлена балка, находим ее высоту по формуле (3):

h = √¯(6W/b) , (3)

где b (см) - ширина сечения балки; W (см³) - момент сопротивления балки изгибу, вычисляется по формуле: W = M/Rизг (где М (кг×см) - максимальный изгибающий момент, а Rизг - сопротивление древесины изгибу, для ели и сосны Rизг = 130 кг/см²).

Можно и наоборот, произвольно задать высоту бруса и найти его ширину:

После этого балку с вычисленными параметрами ширины и высоты по формуле (2) проверяют на прогиб. Здесь необходимо заострить ваше внимание: по несущей способности стропило рассчитывается по наибольшему напряжению, то есть по максимальному моменту изгиба, а на прогиб проверяется сечение, которое находится на наиболее длинном пролете, то есть на участке, где самое большое расстояние между опорами. Прогиб для всех: одно-, двух- и трехпролетных балок проще всего проверить по формуле (2) то есть, как для однопролетных балок. Для двух- и трехпролетных неразрезных балок такая проверка на прогиб покажет немного неверный результат (чуть больший, чем будет на самом деле), но это только увеличит запас прочности балки. Для более точного расчета нужно использовать формулы прогиба для соответствующей расчетной схемы. Например, такая формула указана на рисунке 25. Но еще раз повторим, что лучше внести в расчет некоторый запас прочности и считать прогиб по простой формуле (2) на расстоянии L равном самому большому пролету между опорами, чем найти формулу соответствующую расчетной схеме загружения. И еще на что нужно обратить внимание, по старому СНиПу 2.01.07-85 оба расчета (на несущую способность и на прогиб) велись на одну и ту же нагрузку. В новом же СНиПе 2.01.07-85 говорится, что снеговую нагрузку для расчета на прогиб нужно принимать с коэффициентом 0,7.

рис. 25.1. Пример расположения прогонов на Т- образной крыше

рис. 25.2. Пример расположения прогонов на Т- образной крыше

рис. 26. Нагрузки действующие на прогоны Т- образной крыши.

Если после проверки балки на прогиб он на самом длинном участке будет не более L/200, то сечение оставляют таким, каким оно получилось. При прогибе больше нормативного, увеличиваем высоту балки или подводим под нее дополнительные опоры, но сечение нужно вновь пересчитать по соответствующей расчетной схеме (с учетом введенных опор).

Если кто-то сумел дочитать до этого места, то скажем, что самое сложное в этом расчете не запутаться в единицах измерения (в переводе метров в сантиметры), а все остальное… Умножить и разделить несколько цифр на калькуляторе много знаний не требуется.

В конечном итоге появятся всего две цифры: требуемая для данной нагрузки , которые округляют в большую сторону до целого числа.

Если вместо бруса (цельного, клееного или собранного на МЗП) будет использоваться бревно, то следует учесть, что при работе на изгиб, вследствие сохранности волокон, несущая способность бревна выше, чем у бруса и составляет 160 кг/см². Момент инерции и сопротивления круглого сечения определяется по формулам: J = 0,0491d³d; W = 0,0982d³, где d - диаметр бревна в вершине, см. Моменты сопротивления и инерции бревна, отесанного на один кант, равны J = 0,044d³d, W = 0,092d³, на два канта - J = 0,039d³d; W = 0,088d³, при ширине отеса d/2.

Высота прогонов и стропил, в зависимости от нагрузок и архитектурного решения крыши, может быть самой разнообразной. К тому же, силы, давящие на стены, особенно это касается прогонов, достигают больших величин, поэтому крышу, как, впрочем, и все остальное, нужно проектировать заранее, еще до строительства дома. Например, в схему дома, можно ввести внутреннюю несущую стену и разгрузить прогоны либо сделать на фронтонах стен капители, поставить под прогоны укосы и тем самым уменьшить их прогиб. Иначе будет довольно трудно стыковать разновеликие по высоте прогоны между собой и согласовывать высотные отметки с фронтонами стен.

При использовании длинных и тяжелых прогонов можно применить так называемый «строительный подъем». Это изготовление балки в виде коромысла. Высоту «коромысла» делают равной нормативному прогибу прогона. Нагруженная балка прогнется и станет ровной. Метод пришел к нам от предков. Они в рубленых домах при укладке матиц и переводов (балок) подтесывали бревна снизу, по всей длине, делая подтес глубже в средней части, и при необходимости, подтесывая края балок сверху. Коромыслообразные балки со временем прогибались под собственным весом и становились прямыми. Это технологический прием используется довольно часто, так, например, изготавливаются предварительно напряженные железобетонные конструкции. В повседневной жизни вы этого просто не замечаете, поскольку конструкции выгибаются, и без того небольшой строительный подъем становится совсем не заметным для глаз. Для уменьшения прогиба балки так же можно вводить под нее дополнительные подкосы. При невозможности установить подкосы или сделать «строительный подъем» можно увеличивать жесткость балки изменением ее сечения: на тавровое, двутавровое или решетчатое - ферму с параллельными поясами либо изменить сечение подкладыванием под опоры консольных балок, то есть делать ее низ в виде несовершенной арки.

Опирание прогонов на стену обеспечивается поперечным боковым упором и должно быть рассчитано на смятие древесины. В большинстве случаев достаточно обеспечить нужную глубину опирания и подложить под брусок деревянную подкладку на двух слоях рубероида (гидроизола и т. п.). Однако древесины на смятие провести все-таки нужно. Если опирание не обеспечивает требуемую площадь, при которой смятие не произойдет, площадь деревянной подкладки нужно увеличить, а ее высота должна распределить нагрузку под углом 45°. Напряжение смятия рассчитывается по формуле:

N/Fcм ≤ Rc.90°,

где N-сила давления на опору, кг; Fсм-площадь смятия, см²; Rсм90 - расчетное сопротивление смятию древесины поперек волокон (для сосны и ели Rсм90 = 30 кг/см²).

Нужно обратить особое внимание на стену под опиранием конькового прогона. Если ниже расположено окно, то от верха перемычки до низа прогона должно быть не менее 6 рядов армированной кладки, в противном случае над окном нужно укладывать усиленные железобетонные перемычки по внутренней стороне фронтона. Если планировка дома позволяет, коньковые прогоны не следует делать длинными и тяжелыми, их лучше разделить на два однопролетных прогона либо оставить один и добавить под него опору. Например, планировка дома, изображенного на рисунке 25, подразумевает устройство перегородки в помещении под вторым прогоном. Значит, в перегородке можно установить шпренгельную ферму и разгрузить коньковый прогон, а ферму затем скрыть обшивкой, предположим, гипсокартоном.

Рис. 26.1. Бесстропильная крыша

Другой путь разгрузки коньковых прогонов лежит в том, что можно просто увеличить количество укладываемых прогонов, например, установить по скатам крыши по одному или по два разгружающих прогона. При значительном увеличении числа балок встает вопрос, а зачем нам здесь вообще стропила, обрешетку можно сделать прямо по прогонам. Это действительно так. Такие крыши называются бесстропильными (рис. 26.1). Однако в мансардных утепленных крышах остро встает вопрос просушки утеплителя, поэтому подобие стропил все же делать придется. Для обеспечения воздушного продуха нужно будет вдоль скатов (в том же направлении, как укладываются стропила) на прогоны набить деревянные бруски, например, 50×50 или 40×50 мм, обеспечивая тем самым продух высотой 50 или 40 мм.

Примечание. Ранее, здесь и далее по тексту в формулах встречаются вот такие нелепицы: d³d, это немного режет глаза, но с математической точки зрения это правильная запись. Она показывает что переменная находится в 4-ой степени. Поскольку записать, 4-ой степени на языке вебсайта «ломает» красоту формулы, приходится прибегать к такой записи. То же относится и к подкоренным выражением: все, что в скобках, входит под знак корня.

Пример расчета сечения прогонов.

Дано: загородный дом 10,5×7,5 м. Расчетная нагрузка на крышу по первому предельному состоянию Qр=317 кг/м², по второму предельному состоянию Qн=242 кг/м². План крыши с размерами указанными на .

1. Находим нагрузки по предельным состояниям, действующим на первый прогон:

qр = Qр×a = 317×3 = 951 кг/м
qн = Qн×a = 242×3 = 726 кг/м = 7,26 кг/см

2. Рассчитываем максимальный изгибающий момент, действующий на этом прогоне (формула на ):

М2 = qр(L³1 + L³2)/8L = 951(4,5³ + 3³)/8×7,5 = 1872 кг×м

3. Произвольно задаемся шириной прогона, b=15 см и по формуле (3) находим его высоту:

h = √¯(6W/b) = √¯(6×1440/15) = 24 см,
где W=M/Rизг = 187200/130 = 1440 см³

По сортаменту пиломатериалов ближайшая подходящая балка имеет размеры 150×250 мм. Выбираем ее для последуещего расчета.

4.На самом длинном пролете проверяем прогон на прогиб по формуле (2).

Сначала определяем нормативный прогиб: fнор = L/200 = 450/200 = 2,25 см,
затем расчетный: f = 5qнL²L²/384EJ = 5×7,26×450²×450²/384×100000×19531 = 2 см,
где J = bh³/12 = 15×25³/12 = 19531 смˆ4

Условие выполнено 2 см < 2,25 см, прогиб прогона получился меньше нормативно допустимого. Сечение первого прогона определили, будет применен брус размерами 150×250 мм. Если бы расчетный прогиб получился больше нормативного, то нужно увеличить сечение (лучше высоту) прогона.

5. Находим нагрузки, действующуе на второй прогон.

От расчетной равномерно распределенной для первого предельного состояния она будет равна: qр = Qр×b = 317×3 = 951 кг/м;
для второго предельного состояния qн = Qн×a = 242×3 = 726 кг/м = 7,26 кг/см

В точке соединения прогонов от действия первого прогона на второй прогон будет приложена сосредоточенная сила Р (формула на ):

по первому предельному состоянию Рр=RB = qр b/2 — M2/b = 951×3/2 + 1872/3 = 2051 кг
по второму предельному состоянию Рн=RB = qн b/2 — Mн/b = 726×3/2 + 1429/3 = 1566 кг,
где Мн = qн(L³1 + L³2)/8L = 726(4,5³ + 3³)/8×7,5 = 1429 кг×м

6. Сначала нужно определить по какой формуле будем просчитывать максимальный изгибающий момент на втором прогоне, для этого находим соотношения сил Р/qрL и длин приложения силы c/b (см. ):

Рр/qрL = 2051/951×7,5 =0,29; c/b = 4,5/3 = 1,5

c/b получилось больше, чем p/qрL, значит максимальный момент рассчитываем по формуле:

Ммах = ab(qрL + 2Pр)/2L = 4,5×3(951×7,5 + 2×2051)/2×7,5 =10112 кг×м

7. Произвольно задаемся шириной прогона, b=20 см и по формуле (3) находим высоту прогона:

h = √¯6W/b = √¯(6×7778/20) = 48 см,
где W=Mмах/Rизг = 1011200/130 = 7778 см³

Брусьев такой высоты в сортаменте пиломатериалов нет, значит принимаем решение взять два бруса размерами 200×250 мм, уложить их друг на друга, скрутить шпильками и сшить стальными пластинами МЗП либо изготовим балку с деревянными связями. Таким образом получим балку шириной 200 и высотой 500 мм.

8. Проверяем составную балку на прогиб по формуле . Сначала определяем нормативный прогиб:

fнор = L/200 = 750/200 = 3,75 см

Затем расчетный, в нашем случае он рассчитывается как сумма прогибов от приложения к балке равномерной нагрузки и сосредоточенной силы:

f = 5qнL²L²/384EJ + PнbL²(1 — b²/L²)√¯(3(1- b³/L³)/27EJ) = 5×7,26×750²×750²/384×100000×208333 + 1566×300×750²(1 — 300²/750²)√¯(3(1 — 300³/750³)/27×100000×208333) = 1,4 + 0,7 = 2,1 см,
где J = bh³/12 = 20×503/12 = 208333 смˆ4

Расчетный прогиб получился меньше нормативного 2,1 см < 3,75 см, значит составная балка удовлетворяет нашим требованиям. Таким образом, первый прогон принимаем из цельного бруса 150×250, второй - составным, общей высотой 500, а шириной 200 мм.

Расчет явно показывает, что введением под место пересечения прогонов дополнительной подпорки можно было бы исключить сосредоточенную силу и уменьшить сечение второго прогона, а при данных в примере размерах строения, сделать его равным первому прогону.

Пример проверки узлов опирания прогонов на смятие.

Проверяем площадь опирания прогонов на стены для того, чтобы не произошло необратимого смятия древесины или разрушения материала стены. Предположим, что стены фронтонов выполнены из газосиликата D500. Предел прочности газосиликата D500 на сжатие составляет 25 кг/см², предел прочности древесины сосны на сжатие в опорных частях конструкций под углом 90° к волокнам составляет 30 кг/см². Для недопущения разрушения материала стены и необратимого смятия древесины должны соблюдаться условия:

N/F ≤ Rсж - для материала стены;
N/Fcм ≤ Rc.90° - для древесины

В данном примере получилось, что древесина имеет большую прочность, чем материал стен. Расчет будем производить на недопущение разрушения материала стены, т.е. напряжение сжатия не должно превысить 25 кг/см².

Находим величину давления первого прогона на стены (формулы на , нагрузка qр на странице примера расчета прогона):

RА = qр а/2 — M2/а = 951×4,5/2 +1872/4,5 = 2556 кг
RС = qр L/2 + M2L/аb = 951×7,5/2 — 1872×7,5/4,5×3 = 2526 кг

Вычисляем площадь опирания концов первого прогона:

F=N/Rсж = 2556/25 =103 см
где N=2556 кг (наибольшая из сил давящих на стену), а Rсж = 25 кг/см².

Выходит, что для опирания прогона шириной 15 см нужен «зацеп» на стену равный всего 103/15 = 7 см и при этом не произойдет необратимого смятия древесины и разрушения газосиликатных блоков стены. Поэтому длину опирания прогона на стену примем конструктивно, например, равную 15 см.

Находим величину давления на стены второго прогона:

RD = qр L/2 + bPр/L =951×7,5/2 +4,5×2051/7,5 =4797 кг
RE = qр L/2 + aPр/L =951×7,5/2 +3×2051/7,5 =4387 кг

Вычисляем площадь опирания концов второго прогона:

F=N/Rсж = 4797/25 =192 см,
где N=4797 кг (наибольшая из сил давящих на стену).

Для опирания второго прогона шириной 20 см нужен «зацеп» на стену не менее 192/20 = 10 см. И здесь длину опирания прогона на стену примем конструктивно, равным 15 см.

Расчет конькового бруса и размеры прогона. Если следовать формулировке, то прогон – это несущая балка, которая двумя концами опирается на стену. В большинстве случаев конёк опирается на два фронтона, но иногда эта формулировка не совсем соответствует действительности. Так, в вальмовых крышах конёк не опирается на стены. Самый простой вариант – это балка, уложенная на фронтоны без использования подпорок. В любом случае необходимо правильно определить сечение конькового прогона.

Нюансы выбора и укладки прогона

Чтобы рассчитать сечение конькового прогона, необходимо суммировать нагрузки с половины крыши, вернее, с её горизонтальной проекции. Размеры прогона зависят от его протяжённости и габаритов здания. В большой постройке прогон получится настольно мощный и тяжёлый, что для установки потребуется использовать подъёмный кран. Однако найти ровный цельный брус длиной больше 6 метров очень сложно, поэтому для изготовления такого конька лучше взять обычное бревно или клееную балку.

При этом концы конькового элемента, которые будут опираться на стену и фактически в ней замуровываются, необходимо обработать антисептиками и обернуть толем либо рубероидом, чтобы защитить от гниения. Если будет использоваться цельнодеревянная балка, то её торец необходимо стесать под углом 60 градусов и оставить открытым, то есть этот конец не должен соприкасаться с материалом стен. Такая мера нужна для того, чтобы увеличить площадь торца, что позволит улучшить влагообмен в древесине.

Если коньковый прогон будет проходить через всю стену, то та его часть, которая соприкасается со стеной, тоже должна обрабатываться антисептиком и обматываться рулонным материалом. Такой свес конька за пределами стены позволяет сформировать разгружающую консоль. Если посередине конька нагрузка от крыши пытается прогнуть балку вниз, то на консолях давящая сила способствует прогибу в обратном направлении, тем самым уменьшая прогиб прогона в средней части.

Важно: даже если сечение длинного цельнодеревянного прогона подобрано правильно, и он подходит по прочности на прогиб, балка может прогнуться под собственным весом. Поэтому вместо такого длинного деревянного конька лучше использовать строительную ферму.

Расчёт сечения

Чтобы подобрать сечение коньковой балки, необходимо провести расчёт по двум показателям:

  • на прогиб;
  • и высчитать прочность на разрушение.
  • Сначала требуется определить внутреннее напряжение, которое возникает в балке при изгибе под действием внешней нагрузки. Это значение не должно быть больше расчётного показателя сопротивления материала на изгиб, которое можно найти по таблице или в СНиП номер ІІ-25-80. Внутреннее напряжение находим по формуле: Σ = М:W , где:
  • Σ – искомая величина, которая определяется в кг на см²;
  • М – предельный изгибающий момент (кг Х м);
  • W – это момент сопротивления на прогиб у подобранного сечения стропил (находится по формуле bh²:6).
  • Прогиб прогона нужно сравнить с нормируемым значением, которое равно L/200. Он не должен его превышать. Прогиб балки находится по формуле f = 5qL³L:384EJ, где:
  • J – это момент инерции, который определяется по формуле bh³:12, где h и b – габариты сечения прогона;
  • Е – величина модуля упругости (для древесины хвойных пород она равна 100 тысяч кг/см²).

Для начала нужно высчитать изгибающий момент. Если на схеме балки их присутствует несколько, то после расчёта выбирается наибольший. Далее чтобы определить габариты сечения балки, мы можем произвольно задать параметр ширины балки и потом определить её требуемую высоту по формуле: h = √¯(6W:b), где:

  • b – это заданная нами величина ширины балки в см;
  • W – сопротивление прогона на изгиб, величина определяется по формуле: W = M/130, где М – это самый большой изгибающий момент.

Можно сделать наоборот, задать произвольную ширину прогона и вычислить его высоту по формуле b = 6W:h². После того, как вы вычислите габариты сечения прогона, его необходимо проверить на прогиб по формуле из пункта 2.

Внимание! В расчётное значение прогиба лучше внести небольшой запас прочности.

Когда коньковый брус будет рассчитан на прогиб, то необходимо сравнить эту величину со значением L:200. Если прогиб на наиболее длинном участке не будет превышать это значение, то сечение балки оставляют таким, как получилось. В противном случае необходимо увеличить высоту прогона или использовать дополнительные опоры снизу. В последнем случае полученное сечение нужно перепроверить, снова выполнив расчёт с учётом используемых опор.

Полученные значения ширины и высоты конька нужно округлить в большую сторону. В принципе, выполнить этот расчёт несложно. Самое главное, указывать значения в нужных единицах измерения, то есть не запутаться, переводя метры в сантиметры и обратно.

Обязательное условие установки наслонных стропил - обеспечение их верхней части опорой. В односкатных крышах этот вопрос решается просто: стены строятся разной высоты, на них укладываются мауэрлатные балки, на которые в свою очередь настилаются стропила. В двухскатной крыше можно поступить, также: выстроить внутреннюю стену на требуемую высоту и уложить на нее мауэрлат. Затем на низкие внешние и высокую внутреннюю стены разложить стропила. Однако это решение ограничивает варианты планировок чердачного помещения, которое все чаще используют как мансарду. Да и для обычных чердачных крыш, этот вариант не выгоден, т.к. требует значительных финансовых затрат на возведение высокой внутренней капитальной стены. Поэтому на чердаке внутреннюю стену заменяют горизонтальной балкой установленной на подпорках или опертой на противостоящие друг другу фронтоны стен. Горизонтальную балку, уложенную на крыше, называют прогоном.

Само название: прогон, говорит о том, что эта балка «прокинута» от стены до стены, хотя на самом деле, например, в вальмовых крышах он может быть короче. Самое простое конструкторское решение по установке конькового прогона, это уложить мощную балку на фронтоны стен без каких-либо дополнительных подпорок (рис 24.1).

Рис. 24.1. Пример установки конькового прогона, без дополнительных опор, на стены мансарды

При этом для расчета сечений прогонов нагрузка, действующая на них должна собираться с половины горизонтальной проекции площади крыши.

В зданиях с большими размерами прогоны получаются длинными и тяжелыми, скорее всего, их придется монтировать подъемным краном. Для изготовления прогона найти ровный брус из цельного дерева длиной более 6 м довольно проблематично, поэтому для этих целей лучше использовать клееную балку или бревно. В любом случае, концы прогонов, замуровываемые в стены фронтонов, нужно обработать антисептиками и завернуть в рулонный гидроизоляционный материал. Торцы цельнодеревянных балок скашивают под углом примерно 60° и оставляют открытыми, в нише они не должны упираться в материал стены (рис. 25). Скашивание конца балки увеличивает площадь торца и благоприятствует лучшему влагообмену всей балки. Если прогон проходит сквозь стену, то в месте опирания на стену, его тоже обматывают гидроизоляционным материалом. Балки пропускают сквозь стены из архитектурных соображений затем, чтобы обеспечить свес кровли над фронтонами, хотя его можно достичь и выносом за стену обрешетки. Прогоны, пропущенные через стену образуют разгружающие консоли. Нагрузка давящая на консоли старается выгнуть прогон вверх, а нагрузка действующая на пролете - вниз. Таким образом, общий прогиб прогона в середине пролета становится меньше (рис. 24.2).


рис. 24.2. Прогон с консолями

Если использовать в качестве прогона бревно, то его не обязательно отесывать на два канта, достаточно подтесать в месте опирания стропил и в месте опирания прогона на стены. Длинные прогоны нецелесообразно делать цельнодеревянными, проходящие по расчету на прочность и прогиб они, тем не менее, могут прогнуться под собственным весом. Их лучше заменять строительными фермами.

Сечение прогона подбирается по расчету по первому и второму предельному состоянию - на разрушение и на прогиб. Балка, работающая на изгиб должна отвечать следующим условиям.

1. Внутреннее напряжение, возникающее в ней при изгибе от приложения внешней нагрузки, не должно превышать расчетного сопротивления древесины на изгиб:

σ = М/W ≤ R изг, (1)

где σ - внутреннее напряжение, кг/см²; М - максимальный изгибающий момент, кг×м (кг×100см); W - момент сопротивления сечения стропильной ноги изгибу W = bh²/6, см³; R изг - расчетное сопротивление древесины изгибу, кг/см² (принимается по таблице СНиП II-25-80 «Деревянные конструкции» или по таблице на страничке сайта);

2. Величина прогиба балки не должна превышать нормируемого прогиба:

f = 5qL⁴/384EI ≤ f нор, (2)

где Е - модуль упругости древесины, для ели и сосны он составляет 100 000 кг/см²; I - момент инерции (мера инертности тела при изгибе), для прямоугольного сечения равный bh³/12 (b и h - ширина и высота сечения балки), см⁴; f нор - нормируемый прогиб деревянных стропил и прогонов составляет L/200 (1/200 длины проверяемого пролета балки L), см, брусков обрешетки и консольных балок - L/150, несущих элементов ендов - L/400.

Сначала просчитываются изгибающие моменты М (кг×см). Если на расчетной схеме изображено несколько моментов, то просчитываются все и выбирается наибольший. Далее путем несложных математических преобразований формулы (1), которые мы опускаем, получаем, что размеры сечения балки можно найти, задавшись одним из его параметров. Например, произвольно задавая толщину бруса, из которого будет изготовлена балка, находим ее высоту по формуле (3):

h = √6W/b , (3)

где b (см) - ширина сечения балки; W (см³) - момент сопротивления балки изгибу, вычисляется по формуле: W = M/R изг (где М (кг×см) - максимальный изгибающий момент, а R изг - сопротивление древесины изгибу, для ели и сосны R изг = 130 кг/см²).

Можно и наоборот, произвольно задать высоту бруса и найти его ширину:

b = 6W/h²

После этого балку с вычисленными параметрами ширины и высоты по формуле (2) проверяют на прогиб. Здесь необходимо заострить ваше внимание: по несущей способности стропило рассчитывается по наибольшему напряжению, то есть по максимальному моменту изгиба, а на прогиб проверяется сечение, которое находится на наиболее длинном пролете, то есть на участке, где самое большое расстояние между опорами. Прогиб для всех: одно-, двух- и трехпролетных балок проще всего проверить по формуле (2) то есть, как для однопролетных балок. Для двух- и трехпролетных неразрезных балок такая проверка на прогиб покажет немного неверный результат (чуть больший, чем будет на самом деле), но это только увеличит запас прочности балки. Для более точного расчета нужно использовать формулы прогиба для соответствующей расчетной схемы. Например, такая формула указана на рисунке 25. Но еще раз повторим, что лучше внести в расчет некоторый запас прочности и считать прогиб по простой формуле (2) на расстоянии L равном самому большому пролету между опорами, чем найти формулу соответствующую расчетной схеме загружения. И еще на что нужно обратить внимание, по старому СНиПу 2.01.07-85 оба расчета (на несущую способность и на прогиб) велись на одну и ту же нагрузку. В новом же СНиПе 2.01.07-85 говорится, что снеговую нагрузку для расчета на прогиб нужно принимать с коэффициентом 0,7.

рис. 25. Пример расположения прогонов на Т- образной крыше

Если после проверки балки на прогиб он на самом длинном участке будет не более L/200, то сечение оставляют таким, каким оно получилось. При прогибе больше нормативного, увеличиваем высоту балки или подводим под нее дополнительные опоры, но сечение нужно вновь пересчитать по соответствующей расчетной схеме (с учетом введенных опор).

Самое сложное в этом расчете не запутаться в единицах измерения (в переводе метров в сантиметры), а все остальное… Умножить и разделить несколько цифр на калькуляторе много знаний не требуется.

В конечном итоге появятся всего две цифры: требуемая для данной нагрузки ширина и высота прогонов, которые округляют в большую сторону до целого числа.

Если вместо бруса (цельного, клееного или собранного на МЗП) будет использоваться бревно, то следует учесть, что при работе на изгиб, вследствие сохранности волокон, несущая способность бревна выше, чем у бруса и составляет 160 кг/см².

Момент инерции и сопротивления круглого сечения определяется по формулам: I = 0,04909d⁴; W = 0,09817d³, где d - диаметр бревна в вершине, см.

Моменты сопротивления и инерции бревна отесанного:
на один кант, равны I = 0,04758d⁴, W = 0,09593d³, на два канта - I = 0,04611d⁴; W = 0,09781d³, при ширине отеса d/3;
на один кант, равны I = 0,04415d⁴, W = 0,09077d³, на два канта - I = 0,03949d⁴; W = 0,09120d³, при ширине отеса d/2.

Высота прогонов и стропил, в зависимости от нагрузок и архитектурного решения крыши, может быть самой разнообразной. К тому же, силы, давящие на стены, особенно это касается прогонов, достигают больших величин, поэтому крышу, как, впрочем, и все остальное, нужно проектировать заранее, еще до строительства дома. Например, в схему дома, можно ввести внутреннюю несущую стену и разгрузить прогоны либо сделать на фронтонах стен капители, поставить под прогоны укосы и тем самым уменьшить их прогиб. Иначе будет довольно трудно стыковать разновеликие по высоте прогоны между собой и согласовывать высотные отметки с фронтонами стен.

При использовании длинных и тяжелых прогонов можно применить так называемый «строительный подъем». Это изготовление балки в виде коромысла. Высоту «коромысла» делают равной нормативному прогибу прогона. Нагруженная балка прогнется и станет ровной. Метод пришел к нам от предков. Они в рубленых домах при укладке матиц и переводов (балок) подтесывали бревна снизу, по всей длине, делая подтес глубже в средней части, и при необходимости, подтесывая края балок сверху. Коромыслообразные балки со временем прогибались под собственным весом и становились прямыми. Это технологический прием используется довольно часто, так, например, изготавливаются предварительно напряженные железобетонные конструкции. В повседневной жизни вы этого просто не замечаете, поскольку конструкции выгибаются, и без того небольшой строительный подъем становится совсем не заметным для глаз. Для уменьшения прогиба балки так же можно вводить под нее дополнительные подкосы. При невозможности установить подкосы или сделать «строительный подъем» можно увеличивать жесткость балки изменением ее сечения : на тавровое, двутавровое или решетчатое - ферму с параллельными поясами либо изменить сечение подкладыванием под опоры консольных балок, то есть делать ее низ в виде несовершенной арки.

Опирание прогонов на стену обеспечивается поперечным боковым упором и должно быть рассчитано на смятие древесины. В большинстве случаев достаточно обеспечить нужную глубину опирания и подложить под брусок деревянную подкладку на двух слоях рубероида (гидроизола и т. п.). Однако проверочный расчет древесины на смятие провести все-таки нужно. Если опирание не обеспечивает требуемую площадь, при которой смятие не произойдет, площадь деревянной подкладки нужно увеличить, а ее высота должна распределить нагрузку под углом 45°. Напряжение смятия рассчитывается по формуле:

N/F cм ≤ R c.90° ,

где N-сила давления на опору, кг; F см -площадь смятия, см²; R см90 - расчетное сопротивление смятию древесины поперек волокон (для сосны и ели R см90 = 30 кг/см²).

Нужно обратить особое внимание на стену под опиранием конькового прогона. Если ниже расположено окно, то от верха перемычки до низа прогона должно быть не менее 6 рядов армированной кладки, в противном случае над окном нужно укладывать усиленные железобетонные перемычки по внутренней стороне фронтона. Если планировка дома позволяет, коньковые прогоны не следует делать длинными и тяжелыми, их лучше разделить на два однопролетных прогона либо оставить один и добавить под него опору. Например, планировка дома, изображенного на рисунке 25, подразумевает устройство перегородки в помещении под вторым прогоном. Значит, в перегородке можно установить шпренгельную ферму и разгрузить коньковый прогон, а ферму затем скрыть обшивкой, предположим, гипсокартоном.


рис. 26. Бесстропильная крыша

Другой путь разгрузки коньковых прогонов лежит в том, что можно просто увеличить количество укладываемых прогонов, например, установить по скатам крыши по одному или по два разгружающих прогона. При значительном увеличении числа балок встает вопрос, а зачем нам здесь вообще стропила, обрешетку можно сделать прямо по прогонам. Это действительно так. Такие крыши называются бесстропильными (рис. 26). Однако в мансардных утепленных крышах остро встает вопрос просушки утеплителя, поэтому подобие стропил все же делать придется. Для обеспечения воздушного продуха нужно будет вдоль скатов (в том же направлении, как укладываются стропила) на прогоны набить деревянные бруски, например, 50×50 или 40×50 мм, обеспечивая тем самым продух высотой 50 или 40 мм.

Коньковый брус – это верхняя перекладина, к которой крепятся стропила в крыше. Установка конькового бруса считается особым навыком в работе строителей: они должны производить специальный расчет размеров помещения, места крепления, чердака.

Коньковый деревянный брус и закрепленные к нему стропила призваны выполнять следующие задачи при строительстве жилья:

  1. Создать устойчивую структуру стропильной системы.
  2. Равномерно распределить силу давления и площадь по боковым периметрам.
  3. Распределить правильно вес крыши на фронтоны.
  4. Поддерживание геометрии крыши, длина которой больше 4,5 м. Это позволяет ставить стропила, не применяя шаблона. Если размеры крыши большие, тогда на коньковый деревянный брус кладут стропильную перекладину (верхней частью), а нижняя прикрепляется к мауэрлату.

Важным условием установки конькового бруса является расчет правильного сечения такой подпорки, что позволит сделать устойчивую конструкцию.


Разберемся, как рассчитать и крепить брус. Сечение прогона рассчитывается очень просто: складываются все данные нагрузок с горизонтальной проекции крыши. Размеры конькового бруса зависят от 2 основных параметров:
  1. Брусовые прогоны.
  2. Габариты здания.

Расчет параметров бруса предусматривает, что для больших зданий нужен мощный, тяжелый и довольно увесистый прогон. Но стоит учитывать, что такие размеры конькового бруса потребуют использования подъемного крана. Средняя длина обычного бруса составляет приблизительно 6 м, поэтому для изготовления большего прогона понадобится искать дерево или так называемую клееную балку.

Закрепляемые концы конька, предварительно обработанные антисептиком, упирают в стену, в которую их вмуровывают. Дополнительную обработку проводят рубероидом и толем, что отлично защищает древесину от гниения. Цельнодеревянная балка устанавливается по-другому:

  1. Торец стесывается под углом в 60°.
  2. Концы остаются открытыми, чтобы торцы не соприкасались со стенами.

В результате чего при строительстве дома решаются сразу 2 задачи. Во-первых, площадь торца становится больше. Во-вторых, нормализуются процессы влагообмена.

Затем выполняют расчет размеров конькового бруса, который должен быть установлен в стене и пройти сквозь нее, нужно учесть соприкасание со стеной. Поэтому конец прогона необходимо хорошо обработать антисептиком и обернуть рулонным материалом. Подобная конструкция применяется, чтобы сделать разгружающуюся консоль.

При правильно подобранном сечении для цельнодеревянного бруса нужно учитывать, что балка в коньке в любой момент способна прогнуться под тяжестью собственного веса. Опытные строители рекомендуют устанавливать строительную ферму, чтобы закрепленный коньковый деревянный брус не поломался.

Расчет сечения конькового бруса


Расчет сечения требует учитывать следующие параметры, по которым и будет проводиться вычисление необходимого размера:

  • данные на прогиб;
  • прочность к разрушению.

Чтобы определить сечение, необходимо применять специальные формулы, в которых каждый показатель имеет важное значение. Отдельным расчетом определяются такие данные, как:

  1. Внутреннее напряжение (Σ = М:W).
  2. Прогиб прогона (по формуле f = 5qL³L:384EJ).
  3. Размеры сечения балки определяются по формуле h = √¯(6W:b).

Данные к каждой формуле указаны ниже:

Σ = М:W (определение внутреннего напряжения), где Σ является величиной, которую надо найти. М – это предельный изгибающий момент, который вычисляется в кг/м. W- это сопротивление на прогиб установленного сечения.

Расчет прогиба прогона осуществляется при помощи других данных, которые нужно подставить в формулу f = 5qL³L:384EJ. Буква J означает момент инерции, для получения которого нужно знать габариты сечения прогона (высоту и ширину, обозначаемые буквами h и b). Потом показатель h нужно возвести в куб и умножить на b. Полученное значение делится на 12. Параметр Е – это упругость модуля, который принимается в расчет и является индивидуальным для каждого типа древесины.

Изгибающий момент нужно вычислять по формуле h = √¯(6W:b), где b- это ширина балки в сантиметрах, W- сопротивление прогона на изгиб. Получить W можно, если разделить М (самый большой момент изгиба) на 130.

Значения ширины и высоты, которые получают после вычисления, необходимо округлять в сторону увеличения. Если строитель боится допустить ошибку, нужно обратиться к специалистам, которые сделают расчет параметров, определят, каким должен быть закрепляемый брус и прогон.

Установка конькового бруса

Рассмотрим, как крепить коньковые брусья. Они производятся только из качественного пиломатериала, что связано с важностью конструкции, которая должна выполнять функции длительной и надежной эксплуатации, нести нагрузку, быть безопасной для жильцов здания. Важно, чтобы прогон не делал вес крыши больше, иначе прочность конструкции будет под вопросом. Стропила же должны служить долго, выполняя возложенные функции. С этой целью для конькового бруса часто используется сосновый пиломатериал, сечение которого 20х20 см.

Крепление стропил к коньковому брусу подбирается в зависимости от типа здания: жилого или хозяйственного назначения. В зависимости от этого и будет подбираться материал конька, его сечение и размеры. Например, для бани обычно применяют хорошо просушенную лиственницу, которая отличается более тяжелым весом и прочностью к нагрузкам. Также лиственница отлично справляется с паром, задерживает тепло и держит черепицу. Жилые здания строят из сосны, поскольку крышу принято покрывать так называемой гибкой черепицей.

Лиственницу для изготовления бруса применяют, если дом будет покрываться тяжелой черепицей, для которой нужна прочная и крепкая строительная каркасная конструкция. Важно, чтобы стропила держали не только саму крышу, но и не становились лишним весом для стен. Они должны идеально держать прогоны, не прогибаться под ними.

Для того чтобы сделать стропилам центральную опору, нужно установить брус. Его концы будут упираться в параллельные несущие стены. Правильный монтаж такой конструкции требует вычисления таких данных, как:

  1. Среднегодовое количество осадков, которые выпадают в той или иной местности.
  2. Есть в регионе сильные ветры или нет.
  3. Проектная ширина дома.

Брус коньковый позволяет избежать таких процессов в строительстве дома, как забивание гвоздей, сверление дрелью. В результате чего можно избежать образования щелей, сохранить целостность бруса и обеспечить надежность всей системе стропил.

Двускатная крыша также требует применения конькового прогона, который впоследствии выполняет функции конька крыши. Для того чтобы построить жилой дом размером 6х6 м, рекомендуется брать прогон, сделанный из бревна или цельного бруса. Прогон будет опираться на 2 фронтона, и никаких опор не понадобится. Если же длина дома будет больше 6 м, тогда разрешается применять строительные фермы и составной коньковый прогон. Важно, чтобы брус лежал на наружных фронтонах.

Крепление конькового бруса проводится разными методами, что позволяет соединять брусья нужным образом. Главная цель каждого соединения – сделать конструкцию прочной и надежной. Современные технологии позволяют соединять брусья между собой так, чтобы не применять никакие дополнительные материалы для утепления. Если проектная документация составлена правильно, то дом получится не просто крепким, способным держать крышу, но и станет экологически чистым и надежным для жилья.

Стропильная конструкция является основой любой кровли. Поэтому к ее созданию необходимо отнестись с особым вниманием. При монтаже крыши большинство людей обращается к профессионалам, боясь того, что не справится с задачей самостоятельно.

Стропильная конструкция — это основа для скатной крыши.

Но если общая площадь здания не превышает 100 м 2 , то каркас кровли можно изготовить самостоятельно.

Основная трудность, с которой сталкиваются начинающие мастера, заключается в креплении стропил и конькового прогона. Но если правильно выбрать коньковый брус и заранее спланировать все этапы работ, то никаких сложностей при монтаже обычно не возникает.

Подготовительный этап работ

Коньковым прогоном называют горизонтальную балку, которая располагается в верхней части кровли на стыке 2 скатов. Обычно в качестве балки используют брус коньковый. Этот вид пиломатериалов специально предназначен для больших нагрузок. Но прежде, чем закупать материал, необходимо рассчитать углы наклона кровельных скатов. Принято считать, что чем меньше этот угол, тем дешевле обойдется возведение крыши. В основе расчетов должна лежать не экономическая выгода, а технические характеристики. Необходимо учесть нагрузку на стропила и предположительный вес осадков (особенно зимой). Именно поэтому в средней полосе России крепление стропил располагают так, чтобы скаты располагались под углом в 45°. Именно такая кровля считается оптимальной.

Далее следует выбрать необходимый строительный материал. Действительно надежную кровлю может обеспечить только легкая, но достаточно прочная конструкция. Поэтому разумнее остановить свой выбор на пиломатериале, изготовленном из сосны. Для каркаса кровли обычно используют доску, размеры которой не превышают 20х5х600 см. Кроме того, необходимо приобрести брус коньковый сечением 20х20 см.

Рисунок 1. Схема конька крыши.

Выбирая материалы, необходимо учитывать не только их размер. Нужно обратить внимание и на качество. Ни в коем случае не покупайте непросушенные пиломатериалы. Через какое-то время крепление стропил, собранное из таких досок, непременно поведет. Соответственно, деформируется вся крыша. Помните, что идеальной считается древесина, в которой содержание влаги не превышает 20%.

Вернуться к оглавлению

Монтаж кровельного конька

Перед началом работ составьте схему крепления всех элементов кровли. Пример такой схемы приведен на рис. 1.

Только с помощью подобного чертежа вы сможете правильно определить необходимые размеры и продумаете крепление стропил, которое будет наиболее эффективно для выбранного кровельного материала.

Брус коньковый обычно представляет собой перекладину, располагающуюся вверху кровельной конструкции. Он необходим для того, чтобы равномерно перераспределять давление крыши на стены дома. Самостоятельная установка такого бруса — не самая простая работа. И к ней необходимо подойти со всей ответственностью.

Прежде всего нужно рассчитать длину бруса, который вам понадобится. Обычно при строительстве традиционных для России домов с боков кровли имеются небольшие выступы. Как правило, их ширина не превышает 1,5 м. Всю конструкцию необходимо рассчитать так, чтобы крепление бруса конькового приходилось на всю длину козырьков.

На основание кровли укладывают гидроизоляцию (обычно для нее используют рубероид) и края изоляции загибают вокруг бруса. Далее конструкция укрепляется с помощью арматуры. Для этого берут 2 прута по 40 см и фиксируют по бокам балки. Сам брус разумнее не рассверливать, иначе на нем могут возникнуть трещины.

Вернуться к оглавлению

Удлинение конькового бруса

Для проведения дальнейшей работы вам потребуются следующие инструменты:

  • пила (если выбранный вами пиломатериал имеет значительную толщину, то разумнее пользоваться электро- или бензоинструментом);
  • электрорубанок;
  • перфоратор;
  • молоток;
  • строительный уровень и отвес.

Монтаж кровельного мауэрлата производится на анкерные болты.

Иногда брус необходимо нарастить, так как коньку крыши стандартных 6 м не хватает. Эту процедуру удобнее проводить непосредственно на строительной площадке, потому что наращенную конструкцию бывает достаточно сложно транспортировать на крышу.

Место, в котором будет проходить шов крепления бруса, нужно подобрать так, чтобы он лежал на перекрытии (например, простенке). Помните, что длинной балке необходима дополнительная поддержка.

Для обеспечения опоры по вертикали берется достаточно толстая доска, к которой с боков крепятся 2 отреза бруса. В итоге у вас должна получиться незакрытая рама, в которой бруски послужат вертикальными подпорками для балки. Место стыка 2 брусьев на коньке должно приходиться на эту рамку.

Отрезки бруса, которые будут формировать конек, скрепляют между собой достаточно длинными (не менее 2 м) досками. Для этого концы балки укладывают на предусмотренное для них место, проверяют правильность их расположения с помощью уровня и сшивают досками по бокам. При таком способе крепления размеры коньковой балки неважны. Вся конструкция получается достаточно надежной.

Вернуться к оглавлению

Схема подготовки стропильной конструкции и контробрешетка.

Мауэрлатом называют элемент кровли, который необходим для соединения стропил с несущей стеной здания и правильного перераспределения общей нагрузки. Для формирования такой конструкции необходимо выбрать ровные доски, так как они должны плотно прилегать к поверхности стены. Поэтому все выпуклости на пиломатериале нужно удалить заранее.

Установка мауэрлата начинается с гидроизолирующей прослойки. Все узлы закрепляют с помощью анкерных болтов длиной не менее 20 см. Гнезда под них нужно сформировать заранее, просчитав их месторасположение так, чтобы шляпки болтов находились между элементами крепления стропил и не мешали дальнейшему монтажу. Иногда стандартной длины досок для мауэрлата не хватает. Но их тоже можно нарастить.

Далее переходят к монтажу стропил. Но сначала нужно определить необходимое количество ребер каркаса. Для этого рассчитывают общую длину кровли и делят ее на 1,3 (приблизительное расстояние между стропилами). Длину крыши делят на полученное число и определяют количество стропил. Например:

8 м/1,3=6 шт.

При расчете дробное число необходимо округлить в большую сторону. Таким образом, понадобится 12 ребер (по 6 с каждой стороны). После того как необходимое количество стропил определено, можно получить точный размер между ними:

Крепление стропил должно происходить на 2 уровнях: на коньковой балке и мауэрлате.