Формула для расчета снеговой нагрузки. Как произвести расчет ветровой и снеговой нагрузки на кровлю в зависимости от региона проживания

Кровля осуществляет постоянную защиту здания от всех погодных и климатических проявлений, исключая контакт всех материалов с атмосферной или дождевой водой и являясь граничным слоем, отсекающим воздействие морозного воздуха на чердачное помещение.

Таковы основные и наиболее важные функции кровли в представлении неподготовленного человека, они вполне верны, но не отражают полный список функциональных нагрузок и испытываемых напряжений.

При этом, реальность гораздо суровее, чем это выглядит на первый взгляд, и воздействие на кровлю не ограничивается определенным износом материала.

Оно передается практически всем несущим элементам постройки — в первую очередь, стенам здания, на которые непосредственно опирается вся крыша, а в конечном счете — фундаменту.

Пренебрегать всеми создающимися нагрузками нельзя, это приведет к скорому (иногда — внезапному) разрушению постройки.

Основными и наиболее опасными воздействиями на кровлю и на всю конструкцию в целом являются:

  • Снеговые нагрузки.
  • Ветровые нагрузки.

При этом, снеговые действуют в течение определенных зимних месяцев, отсутствуя в теплое время, тогда как ветер создает воздействие круглый год. Ветровые нагрузки, имея сезонные колебания силы и направления, в той или иной степени присутствуют постоянно и опасны периодически случающимися шквальными усилениями.

Кроме того, интенсивность этих нагрузок имеет разный характер:

  • Снег создает постоянное статическое давление , которое можно регулировать путем очистки крыши и удаления скоплений. Направление действующих усилий постоянно и никогда не меняется.
  • Ветер действует непостоянно, рывками, внезапно усиливаясь или утихая. Направление может изменяться, что заставляет все конструкции крыши иметь солидный запас прочности.

Внезапный сход с крыши больших масс снега может причинить ущерб имуществу или людям, оказавшимся в местах падения. Кроме того, периодически случаются кратковременные, но чрезвычайно разрушительные атмосферные явления — ураганные ветра, сильные снегопады, особенно опасные при наличии мокрого снега, который на порядок тяжелее обычного. Предсказать дату таких событий практически невозможно и в качестве защитных мер можно лишь увеличивать прочность и надежность кровли и стропильной системы.

Сбор нагрузок на кровлю

Зависимость нагрузок от угла наклона крыши

Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.

Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши , ветровые напряжения возрастают.

Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля , тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.

Зависимость нагрузки от угла крыши

Вес снега на квадратный метр крыши в зависимости от региона

Количество осадков — показатель, напрямую зависящий от географии региона. Более южные районы снега почти не видят, более северные имеют постоянное сезонное количество снеговых масс.

При этом, высокогорные районы, вне зависимости от географической широты, имеют высокие показатели по количеству выпадающего снега, что, в сочетании с частыми и сильными ветрами, создает массу проблем.

Строительные Нормы и Правила (СНиП), соблюдение положений которых является обязательным к выполнению, содержат специальные таблицы, отображающие нормативные показатели количества снега на единицу поверхности в разных регионах.

ОБРАТИТЕ ВНИМАНИЕ!

Следует учитывать обычное состояние снеговых масс в данном районе. Мокрый снег в несколько раз тяжелее сухого.

Эти данные являются основой расчетов снеговых нагрузок, поскольку они вполне достоверны, а также приводятся не в средних, а в предельных значениях, обеспечивающих должный запас прочности при строительстве крыши.

Тем не менее, следует учитывать устройство кровли, ее материал, а также — наличие дополнительных элементов, вызывающих скопления снега, поскольку они могут существенно превышать нормативные показатели.

Вес снега на квадратный метр крыши в зависимости от региона на схеме ниже.

Регион снеговой нагрузки

Расчет снеговой нагрузки на плоскую крышу

Расчет несущих конструкций выполняется по методу предельных состояний, то есть таких, когда испытываемые усилия вызывают необратимые деформации или разрушения. Поэтому прочность плоской кровли должна превышать величину снеговой нагрузки для данного региона.

Для элементов крыши существует два типа предельных состояний:

  • Конструкция разрушается.
  • Конструкция деформируется, выходит из строя без полного разрушения.

Расчеты ведутся по обоим состояниям, имея целью получить надежную конструкцию, гарантированно выдерживающую нагрузку без последствий, но и без излишних затрат строительных материалов и труда. Для плоских крыш значения снеговых нагрузок будут максимальными, т.е. поправочный коэффициент уклона равен 1.

Таким образом, согласно таблицам СНиП, общий вес снега на плоской кровле составит величину норматива, умноженную на площадь кровли. Значения могут достигать десятки тонн, поэтому зданий с плоскими крышами в нашей стране практически не строят, особенно в регионах с высокими нормами осадков в зимнее время.

Расчет снеговой нагрузки на кровлю онлайн

Пример расчета снеговой нагрузки поможет наглядно продемонстрировать порядок действий, а также покажет возможную величину давления снега на конструкции дома.

Снеговая нагрузка на кровлю рассчитывается с помощью следующей формулы:

S = Sg * µ;

где S — давление снега на квадратный метр кровли.

Sg — нормативная величина снеговой нагрузки для данного региона.

µ — поправочный коэффициент, учитывающий изменение нагрузки на разных углах наклона кровли. От 0° до 25° значение µ принимается равным 1, от 25° до 60° — 0,7. При углах наклона кровли свыше 60° снеговая нагрузка не учитывается , хотя в реальности бывают скопления мокрого снега и на более крутых поверхностях.

Произведем подсчет нагрузки на кровлю площадью 50 кв.м, угол наклона — 28° (µ=0,7), регион — Московская область.

Тогда нормативная нагрузка составляет (по данным СНиП) 180 кг/кв.м.

Умножаем 180 на 0,7 — получаем реальную нагрузку 126 кг/кв.м.

Полное давление снега на кровлю составит: 126 умножаем на площадь кровли — 50 кв.м. Результат — 6300 кг . Таков расчетный вес снега на крыше.

Снеговое воздействие на кровлю

Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

W= Wo * k;

Wo — нормативная величина по региону.

k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

Роза ветров

Имеются три группы значений:

  • Для открытых участков земной поверхности.
  • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
  • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

ОСТОРОЖНО!

При проведении расчетов следует учитывать независимость снеговых и ветровых нагрузок друг от друга, а также — одновременность их воздействия. Общая нагрузка на кровлю — это сумма обоих значений.

В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

Полезное видео

Более подробно о кровельных нагрузках вы можете узнать из этого видео:

Вконтакте

Снег приятная радость для многих, а порой для них же огромное бедствие, особенно когда его много. В определение веса важно понимать по его расчетам в первую очередь для строителей, да бы не обрушивались кровли.

Масса удельного веса снега на 1м³ в зависимости от характеристики

Характеристика снега Удельный вес (г/см³) Вес 1 м³ (кг)
Сухой снег 0.125 125
Свежевыпавший пушистый сухой от 0,030 до 0,060 от 30 до 60
Мокрый снег до 0.95 до 950
Мокрый свежевыпавший от 0,060 до 0,150 от 60 до 150
Свежевыпавший осевший от 0,2 до 0,3 от 200 до 300
Ветрового (метелевого) перенос от 0,2 до 0,3 от 200 до 300
Сухого осевшего старого от 0,3 до 0,5 от 300 до 500
Сухого фирна (плотный снег) от 0,5 до 0,6 от 500 до 600
Мокрого фирна от 0,4 до 0,8 от 400 до 800
Мокрого старого от 0,6 до 0,8 от 600 до 800
Глетчерного льда от 0,8 до 0,96 от 800 до 960
Лежачий снег более 30 суток 340-420

В некоторых странах снег является отличным строительным материалам, например при возведение Иглу у эскимосов, а на праздники для строительства оригинальных скульптур.

Формирование снега как природного явления

Снег – природное явление, образующееся из-за кристаллизации маленьких капелек воды в атмосфере и впадающее на землю в виде осадков. Формирование снега осуществляется в атмосфере, когда микроскопические частички воды начинают группироваться вокруг таких же размеров частичек пыли и кристаллизироваться. Изначально размер образующихся ледяных кристаллов не превышает 0,1 мм. Но в процессе падения к земной поверхности, в зависимости от температуры внешней среды, они начинают «обрастать» другими водяными замерзшими кристаллами и пропорционально увеличиваться.

Узорная форма снежинок образуется из-за определённой структуры молекул воды. Обычно это шестиконечные узорчатые фигуры, с возможным углом между гранями либо 60, либо 120 градусов. При этом основной «центральный» кристалл образует форму шестиугольника с правильными гранями. А присоединившиеся в процессе падения кристаллические лучи могут придавать снежинке самой разнообразной формы. Учитывая, что в процессе падения снежинки подвергаются воздействию ветра, перепадов температур, могут повторно наращивать количество кристаллов, в конечном итоге они набирают не только плоской, но и объемной формы. С виду это может показаться нагромождением замерзших капелек воды, но если присмотреться внимательно, то в изначальной структуре все такие присоединения будут иметь правильные углы.


Как правило, цвет снега белый. Это связано с наличием в его внутренней структуре воздуха. Фактически снег на 95% состоит из воздуха. Именно это и обусловливает «легкость» снежинок, а также плавное приземление на твердые поверхности. В дальнейшем, когда свет проходит через кристаллизованную воду с учетом воздушных прослоек и начинает рассеиваться, снежинка приобретает видимый белый цвет. Но это классический вариант. Если же в атмосфере будут находиться другие элементы, в том числе и крошечные частички пыли, гари, загрязненного производственными выбросами воздушными смесями – снег может приобретать и другие оттенки.

Обычно снежинки имеют размеры, не превышающие 5 мм в диаметре. Но в истории известны случаи образования снежинок «гигантов», когда размеры каждого «экземпляра достигали в диаметре до 30 см. В то же время, учитывая множество факторов, влияющий на процесс формирования этих природных творений, считается, что найти две одинаковые снежинки просто невозможно. И даже если визуально вам кажется, что они полностью похожи, присмотревшись к ним под микроскопом вы поймете, что это далеко не так. Вариаций их возможных форм сегодня неограниченное количество.

Сколько весит 1 куб снега – зависимости от зависимостей

  • От температуры окружающей среды
  • От времени с момента осадков
  • От дополнительных осадков в виде дождя
  • От плотности слеживания


Отличной вам погоды в доме!

При проектировании крыши, нужно учитывать нагрузки, действующие на нее — снеговую и ветровую. Чтобы определиться с показателями этих величин, можно обратиться в специальную строительную организацию, где инженеры помогут вам с расчетами. Но если хотите все сделать самостоятельно и не сомневаетесь в своих силах, то здесь Вы найдете необходимые формулы с подробным описанием величин, которые понадобятся при расчёте. Итак, для начала разберемся, что же представляют из себя эти нагрузки и почему их обязательно необходимо учитывать.

Российский климат очень разнообразен. Важно понимать, что на крышу строящегося дома будут оказывать влияние изменение температур, ветровое давление, осадки и другие физико-механические факторы. Причем степень их влияния напрямую будет зависеть от района строительства. Всё это будет оказывать давление не только на ограждение крыши — кровлю, но и на несущие конструкции, такие как стропила и обрешётка. Надо понимать, что дом — это единая конструкция. По цепной реакции нагрузка от крыши передается на стены, а от них — на фундамент. Поэтому важно рассчитать все до мелочей.

Снежный покров, образующийся в зимние периоды на крыше дома, оказывает на нее определенное давление. Чем севернее район, тем больше снега. Кажется, что и угроза поломок выше, но стоит быть более осторожным при проектировании дома в районе, где происходит периодическая смена температур, способная вызвать таяние снега и последующее его промерзание. Средний вес снега 100 кг/м3, а вот в сыром состоянии он может достигать 300 кг/м3. В таких случаях снеговая масса может стать причиной деформации стропильной системы, гидро- и теплоизоляции, что повлечёт за собой протечки кровли. Такие погодные условия скажутся и на быстром и неравномерном сходе снегового покрова с крыши, что может быть опасным для человека.

Чем больше уклон кровли, тем меньше снеговых отложений на ней будет задерживаться. Но если ваша кровля имеет сложную форму, то в местах стыка кровли, где образуются внутренние углы, может собираться снег, что будет способствовать образованию неравномерной нагрузки. Лучше устанавливать снегозадержатели в районах, где количество осадков достаточно велико, чтобы снег, собравшийся возле края карниза, не мог повредить систему водостока. Уборку снега можно осуществлять самостоятельно, но этот процесс нельзя назвать стопроцентно безопасным.

Для того, чтобы обеспечить безопасный сход снега и предотвратить образование сосулек, применяют систему кабельного обогрева. Ей можно управлять автоматически или вручную. Зависит от вашего желания и выбора. Нагревательные элементы такой системы располагают по всему краю крыши перед водосточным желобом.

Для России значение снеговой нагрузки будет зависеть от района строительства. Определить, какой вес снегового покрова будет в вашем районе, поможет специальная карта.

Технология расчета снеговой нагрузки: S=Sg*m, где Sg - расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности земли, принимаемое по таблице, а m – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Расчётное значение веса снегового покрытия Sg принимается в зависимости от снегового района Российской Федерации.

Определение снеговой нагрузки местности

Снеговой район I II III IV V VI VII VIII
Вес снегового покрытия Sg (кгс/м2) 80 120 180 240 320 400 480 560

Коэффициент m зависит от угла наклона ската кровли, при углах наклона ската кровли:

    меньше 25 градусов m принимают равным 1

    от 25 до 60 градусов значение m принимают равным 0,7 (примерно, для каждого уклона свое значение)

    более 60 градусов значение m, в расчёте полной снеговой нагрузки, не учитывают.

Ветер оказывает боковое давление на стены дома и крышу. Воздушный поток, сталкиваясь с препятствием, распределяется, уходя вниз к фундаменту и наверх в карнизный свес крыши. Если не рассчитывать давление ветра, то кровельное покрытие может просто сорвать от ураганного ветра. Такое разрушение не всегда можно исправить каким-то косметическим ремонтом, зачастую это приводит к необходимости замены кровли. Важным показателем при расчете воздействия ветра учитывают аэродинамический коэффициент. Он зависит от угла уклона кровли. Чем круче скат, тем нагрузка будет больше, и ветер будет стараться «опрокинуть» крышу. Если же угол вашей кровли небольшой, то ветер будет воздействовать на крышу подобно подъёмной силе, стараясь сорвать и отнести ее прочь. Для того, чтобы этого не случилось, нужно правильно соблюдать конструкцию кровли. Устойчивость стропильной системы зависит от обеспечения пространственной жесткости, которая складывается из правильного сочетания в ней раскосов, подкосов и диагональных связей, а также жесткого крепления их между собой. Помимо этого, ветер может переносить предметы, которые при столкновении с крышей будут оставлять механические повреждения. Чтобы этого не произошло, нужно внимательно выбирать кровельное покрытие и правильно организовывать обрешетку для его укладки.

Давление ветра, как и вес снегового покрова, будет зависеть от района строительства. Определить районирование можно по размещённой ниже карте.

Технология расчёта ветровой нагрузки

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по таблице ниже в зависимости от типа местности. Принимаются следующие типы местности:

    А – открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи, тундра;

    B – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

    С – городские районы с застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h до 60 м. и 2 км. – при большей высоте.

Высота z, м Коэффициент k для типов местности
≤ 5 0,75 0,50 0,40
10 1,00 0,65 0,40
20 1,25 0,85 0,55
40 1,50 1,10 0,80
60 1,70 1,30 1,00
80 1,85 1,45 1,15
100 2,00 1,60 1,25
150 2,25 1,90 1,55
200 2,45 2,10 1,80
250 2,65 2,30 2,00
300 2,75 2,50 2,20
350 2,75 2,75 2,35
≥ 480 2,75 2,75 2,75

Примечание: при определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

Ветровая и снеговая нагрузки при проектировании навесов

Особое внимание расчёту необходимо уделить тем, кто задумался о проектировании навеса – например, для беседки или стоянки автомобиля. Обычно в таких случаях используют экономичную конструкцию, не имеющую достаточную жесткость. Поэтому нельзя игнорировать давление снега. Рекомендуется чистить снег вовремя, не допуская образования снежного покрова толщиной более 30 см. Для навеса, выполненного из дерева, надёжнее будет сделать сплошную обрешётку и усиленные стропила. Если же вы выбрали металлическую конструкцию, то она должна иметь соответствующую толщину профиля. В любом случае, для выбора материалов необходимой жесткости, лучше использовать результаты расчета.

Примеры расчёта снеговой и ветровой нагрузок для Москвы и Московской области

Пример №1: Расчёт снеговой нагрузки

Исходные данные:

    регион: Москва

    уклон кровли: 35 градусов

Найдем полное расчётное значение снеговой нагрузки S:

    полное расчётное значение снеговой нагрузки определяется по формуле: S=Sg*m

    по карте зон снегового покрова территории РФ определяем номер снегового района для Москвы: в нашем случае — это III, что соответствует по таблице весу снегового покрытия Sg=180 (кгс/м2);

    коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие для угла крыши в 35 градусов m=0,7

    получаем: S=Sg*m = 180*0,7 = 126 (кгс/м2)

Пример №2: Расчёт ветровой нагрузки

Исходные данные:

    регион: Москва

    уклон кровли: 35 градусов

    высота здания: 20 метров

    тип местности: городские территории

Найдем полное расчётное значение ветровой нагрузки W:

    Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле: W=Wo*k ,

    По карте зон ветрового давления по территории РФ определяем для Москвы регион I

    Нормативное значение ветровой нагрузки, соответствующее I району, принимаем Wo=23(кгс/м2)

    Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл. 6 k=0,85

    Получаем: W=Wo*k = 23*0,85 = 19,55(кгс/м2)

Тема о снеге в сентябре не очень актуальна даже для нас — жителей Сибири. Однако… «сани» уже должны быть готовы, не смотря на то, что пока мы еще продолжаем ездить на «телегах». Приходят на память моменты, когда после обильного снегопада зимой и перед таянием снега весной...

Собственники различных строений — от бань, навесов и теплиц до огромных бассейнов, стадионов, цехов, складов — озадачиваются двумя вытекающими один из другого вопросами: «Выдержит или не выдержит кровля скопившуюся на ней массу снега? Сбрасывать этот снег с крыши или нет?»

Снеговая нагрузка на кровлю – вопрос серьезный и не терпящий дилетантского подхода. Попробую по возможности кратко и доступно изложить информацию о снеге и оказать помощь в решении выше озвученных вопросов.

Сколько весит снег?

Всем, кому приходилось убирать снег лопатой, хорошо известно, что снег бывает и очень легким и неимоверно тяжелым.

Пушистый легкий снежок, выпавший в относительно морозную погоду с температурой воздуха около -10˚C имеет плотность порядка 100 кг/м3.

В конце осени и в начале зимы удельный вес снега, лежащего на горизонтальных и слабо наклонных поверхностях, обычно составляет 160±40 кг/м3.

В моменты продолжительных оттепелей удельный вес снега существенно начинает расти (снег «садится» как весной), достигая иногда значений в 700 кг/м3. Именно поэтому в более теплых районах плотность снега всегда больше, чем в холодных северных местностях.

К середине зимы снег уплотняется под действием солнца, ветра и от давления верхних слоев сугробов на нижние слои. Удельный вес становится равным 280±70 кг/м3.

К концу зимы под действием более интенсивного солнца и февральских ветров плотность снежного наста может стать равной 400±100 кг/м3, иногда достигая 600 кг/м3.

Весной перед обильным таянием удельный вес «мокрого» снега может быть 750±100 кг/м3, приближаясь к плотности льда — 917 кг/м3.

Снег, который сгребли в кучи, перебросили с места на место, увеличивает в 2 раза свой удельный вес.

Наиболее вероятная среднестатистическая плотность «сухого» уплотнившегося снега находится в пределах 200…400 кг/м3.

Для получения информации о выходе новых статей и для возможности скачивать рабочие файлы программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

Введите адрес своей электронной почты, нажмите на кнопку «Получать анонсы статей», подтвердите подписку в письме, которое тут же придет к вам на указанную почту !

Убирать снег с крыш или нет?

Необходимо понимать простую вещь – масса снега, лежащего на крыше, при отсутствии снегопадов остается неизменной независимо от плотности!!! То есть то, что снег «стал тяжелее» нагрузку на кровлю не увеличило!!!

Опасность заключается в том, что слой рыхлого снега может впитать в себя, как губка, осадки в виде дождя. Вот тогда общая масса воды в разных своих видах, находящаяся на крыше, резко возрастет — особенно при отсутствии стока, а это очень опасно.

Для корректного ответа на вопрос об уборке снега с крыши необходимо знать, на какую нагрузку она спроектирована и построена . Необходимо знать — какое давление распределенной нагрузки — сколько килограммов на квадратный метр – крыша реально может держать до начала недопустимых деформаций конструкции.

Для объективного ответа на этот вопрос необходимо обследовать крышу, составить новую или подтвердить проектную расчетную схему, выполнить новый расчет или взять результаты старого проектного. Далее следует опытным путем определить плотность снега – для этого вырезается образец, взвешивается и считается его объем, а далее – удельный вес.

Если, к примеру, кровля по расчетам должна выдерживать удельное давление 200 кг/м2, плотность снега, определенная опытным путем составляет 200 кг/м3, то это означает, что снеговые сугробы не должны быть глубиной более 1 м.

При наличии на кровле снегового покрытия глубиной более 0,2…0,3 м и высокой вероятности дождя с последующим похолоданием, необходимо принять меры по сбросу снега.

Нормативная и расчетная снеговая нагрузка.

при проектировании и строительстве объектов? Ответ на этот вопрос изложен для специалистов в СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. Мы не станем «забирать хлеб» у строителей-проектировщиков и углубляться в варианты геометрических типов покрытий, углов скатов, коэффициентов сноса снега и прочие сложности. Но общий алгоритм составим и программу его реализующую напишем. Мы научимся определять нормативное и расчетное снеговое давление на горизонтальную проекцию покрытия для объектов в любой интересующей нас местности России.

Запомним несколько «аксиом». Если на простой односкатной или двускатной крыше угол уклона покрытия больше 60 ˚ , то считается, что снега на такой крыше быть не может (μ =0) . Он весь «скатится». Если угол уклона покрытия меньше 30 ˚ , то считается, что весь снег на такой крыше лежит тем же слоем, как и на земле (μ =1) . Все остальные случаи – промежуточные значения, определяемые линейной интерполяцией. Например, при угле равном 45 ˚ только 50% выпавшего снега будет лежать на кровле (μ=0,5).

Проектировщики ведут расчет по предельным состояниям, которые делят на две группы. Переход за предельные состояния первой группы это – разрушение и утрата объекта. Переход за предельные состояния второй группы это – превышение прогибами допустимых пределов и, как следствие, необходимость ремонта объекта, возможно — капитального. В первом случае в расчете используют расчетную снеговую нагрузку, равную увеличенной на 40% нормативной нагрузке. Во втором случае расчетная снеговая нагрузка – это нормативная снеговая нагрузка.

Расчет в Excel снеговой нагрузки по СП 20.13330.2011.

При отсутствии на вашем компьютере программы MS Excel, можно воспользоваться свободно распространяемой очень мощной альтернативой — программой OOo Calc из пакета Open Office.

Перед началом работы найдите в Интернете и скачайте СП 20.13330.2011 со всеми приложениями.

Часть важных материалов из СП 20.13330.2011 находятся в файле, который подписчики сайта могут скачать по ссылке, размещенной в самом конце этой статьи.

Включаем компьютер и начинаем расчет в Excel снеговой нагрузки на покрытия.

В ячейки со светло-бирюзовой заливкой запишем исходные данные, выбранные по СП 20.13330.2011. В ячейках со светло-желтой заливкой считаем результаты. В ячейках с бледно-зеленой заливкой разместим исходные данные, мало подверженные изменениям.

В примечаниях ко всем ячейкам столбца C поместим формулы и ссылки на пункты СП 20.13330.2011!!!

1. Открываем Приложение Ж в СП 20.13330.2011 и по карте «Районирование территории Российской Федерации по весу снегового покрова» определяем для местности, где построено (или будет построено) здание номер снегового района. Например, для Москвы, Санкт-Петербурга и Омска – это III снеговой район. Выбираем соответствующую строку с записью III в поле с выпадающим списком, расположенном поверх

Подробно о том, как работает функция ИНДЕКС совместно с полем со списком можно прочитать .

2. Считываем массу снегового покрова на 1 м2 горизонтальной поверхности землиSg в кг/м2 для выбранного района

3. Принимаем в соответствии с п. 10.5-10.9 СП 20.13330.2011 значение коэффициента, учитывающего снос снега с покрытий зданий ветром Ce

в ячейке D4: 1,0

Ce — пишите 1,0.

4. Назначаем в соответствии с п. 10.10 СП 20.13330.2011 значение термического коэффициента Ct

в ячейке D5: 1,0

Если не понимаете, как назначать Ct — пишите 1,0.

5. Назначаем в соответствии с п. 10.4 по Приложению Г СП 20.13330.2011 значение коэффициента перехода от веса снегового покрова земли к снеговой нагрузке на покрытии μ

в ячейке D6: 1,0

Вспоминаем «аксиомы» из предыдущего раздела статьи. Не помните и ничего не понимаете — пишите 1,0.

6. Считываем нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия S 0 в кг/м2, рассчитанное

в ячейке D7: =0,7*D3*D4*D5*D6 =128

S0 =0.7*Ce *Ct * μ * Sg

7. Записываем в соответствии с п. 10.12 СП 20.13330.2011 значение коэффициента надежности по снеговой нагрузке γ f

в ячейке D8: 1,4

8. И, наконец считываем расчетное значение снеговой нагрузки на горизонтальную проекцию покрытия S в кг/м2, рассчитанное

в ячейке D9: =D7*D8 =180

S = γ f * S 0

Таким образом, для «простых» зданий третьего снегового района при μ =1 расчетная снеговая нагрузка равна 180 кг/м2. Этому соответствует высота снежного покрова 0,90…0,45 м при плотности снега 200…400 кг/м3 соответственно. Выводы делать каждому из нас!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

ОСТАЛЬНЫМ можно скачать просто так... - никаких паролей нет!

Жду ваши комментарии, уважаемые читатели!!! Профессионалов – строителей прошу «бить не сильно». Статья написана не для специалистов, а для широкой аудитории.


Как следует из названия нагрузок, это внешнее давление которое будет оказываться на ангар посредством снега и ветра. Расчеты производятся для того что бы закладывать в будущее здание материалы с характеристиками, которые выдержат все нагрузки в совокупности.
Расчет снеговой нагрузки производится согласно СНиП 2.01.07-85* или согласно СП 20.13330.2016 . На данный момент СНиП является обязательным к исполнению, а СП носит рекомендательный характер, но в общем в обоих документах написано одно и тоже.

В СНИП указанно 2 вида нагрузок - Нормативная и Расчетная, разберемся в чем их отличия и когда они применяются: - это наибольшая нагрузка, отвечающая нормальным условиям эксплуатации, учитываемая при расчетах на 2-е предельное состояние (по деформации). Нормативную нагрузку учитывают при расчетах на прогибы балок, и провисание тента при расчетах по раскрытию трещин в ж.б. балках (когда не применяется требование по водонепроницаемости), а так же разрыву тентовой ткани.
- это произведение нормативной нагрузки на коэффициент надежности по нагрузке. Данный коэффициент учитывает возможное отклонение нормативной нагрузки в сторону увеличения при неблагоприятном стечении обстоятельств. Для снеговой нагрузки коэффициент надежности по нагрузке равен 1,4 т.е. расчетная нагрузка на 40% больше нормативной. Расчетную нагрузку учитывают при расчетах по 1-му предельному состоянию (на прочность). В расчетных программах, как правило, учитывают именно расчетную нагрузку.

Большим плюсом каркасно-тентовой технологии строительства в этом ситуации является ее свойство по "исключению" этой нагрузки. Исключение подразумевает, что осадки не скапливаются на крыше ангара, благодаря её форме, а так же характеристикам укрывающего материала.

Укрывающий материал
Ангар укомплектовывается тентовой тканью с определенной плотностью (показатель влияющий на прочность) и необходимыми вам характеристиками.

Формы крыши
Все каркасно-тентовые здания имеют покатую форму крыши. Именно покатая форма крыши позволяет снимать нагрузку от осадков с крыши ангара.


Дополнительно к этому стоит отметить, что тентовый материал покрыт защитным слоем полевинила. Полевинил защищает ткань от химических и физических воздействий, а так же имеет хорошую антиадгезию, что способствует
скатыванию снега под своим весом.

Снеговая нагрузка.

Есть 2 варианта определить снеговую нагрузку определенного местоположения.

I Вариант - посмотреть ваш населенный пункт в таблице
II Вариант - определите на карте номер снегового района, интересующего вас местоположения и переведите их в килограммы, по приведенной ниже таблице.

  1. Определите номер вашего снегового района на карте
  2. сопоставьте цифру с цифрой в таблице


Плохо видно? Скачайте все карты одним архивом в хорошем разрешении (формат TIFF).

Ветровой район
Ia I II III
IV
V VI VII
Wo (кгс/м2) 17 23 30 38 48 60 73 85

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле:

W=Wo*k

Wo - нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района РФ.

k - коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

  • А - открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи и тундры.
  • B - городские территории, лесные массивы и др. местности, равномерно покрытые препятствиями более 10 м.

*При определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

  • 5 м.- 0,75 А / 0.5 B .
  • 10 м.- 1 А / 0.65 B°.
  • 20 м.- 1,25 А / 0.85 B

Снеговые и ветровые нагрузки в городах РФ.

Город Снеговой район Ветровой район
Ангарск 2
3
Арзамас 3
1
Артем 2
4
Архангельск 4
2
Астрахань 1
3
Ачинск 3
3
Балаково 3
3
Балашиха 3
1
Барнаул 3
3
Батайск 2
3
Белгород 3
2
Бийск 4
3
Благовещенск 1
2
Братск 3
2
Брянск 3
1
Великие Луки 2
1
Великий Новгород 3
1
Владивосток 2
4
Владимир 4
1
Владикавказ 1
4
Волгоград 2
3
Волжский Волгогр. Обл 3
3
Волжский Самарск. Обл 4
3
Волгодонск 2
3
Вологда 4
1
Воронеж 3
2
Грозный 1
4
Дербент 1
5
Дзержинск 4
1
Димитровград 4
2
Екатеринбург 3
1
Елец 3
2
Железнодорожный 3
1
Жуковский 3
1
Златоуст 3
2
Иваново 4
1
Ижевск 5
1
Йошкар-Ола 4
1
Иркутск 2
3
Казань 4
2
Калининград 2
2
Каменск-Уральский 3
2
Калуга 3
1
Камышин 3 3
Кемерово 4
3
Киров 5
1
Киселевск 4
3
Ковров 4
1
Коломна 3
1
Комсомольск-на-Амуре 3
4
Копейск 3
2
Красногорск 3
1
Краснодар 3
4
Красноярск 2
3
Курган 3
2
Курск 3
2
Кызыл 1
3
Ленинск-Кузнецкий 3
3
Липецк 3
2
Люберцы 3
1
Магадан 5
4
Магнитогорск 3
2
Майкоп 2
4
Махачкала 1
5
Миасс 3
2
Москва 3
1
Мурманск 4
4
Муром 3
1
Мытищи 1
3
Набережные Челны 4
2
Находка 2
5
Невинномысск 2
4
Нефтекамск 4
2
Нефтеюганск 4
1
Нижневартовск 1
5
Нижнекамск 5
2
Нижний Новгород 4
1
Нижний Тагил 3
1
Новокузнецк 4
3
Новокуйбышевск 4
3
Новомосковск 3
1
Новороссийск 6
2
Новосибирск 3
3
Новочебоксарск 4
1
Новочеркасск 2
4
Новошахтинск 2
3
Новый Уренгой 5
3
Ногинск 3
1
Норильск 4
4
Ноябрьск 5
1
Обниск 3 1
Одинцово 3
1
Омск 3
2
Орел 3
2
Оренбург 3
3
Орехово-Зуево 3
1
Орск 3
3
Пенза 3
2
Первоуральск 3
1
Пермь 5
1
Петрозаводск 4 2
Петропавловск-Камчатский 8
7
Подольск 3
1
Прокопьевск 4
3
Псков 3
1
Ростов-на-Дону 2
3
Рубцовск 2
3
Рыбинск 1
4
Рязань 3
1
Салават 4
3
Самара 4
3
Санкт-Петербург 3
2
Саранск 4
2
Саратов 3
3
Северодвинск 4
2
Серпухов 3
1
Смоленск 3
1
Сочи 2
3
Ставрополь 2
4
Старый Оскол 3
2
Стерлитамак 4
3
Сургут 4
1
Сызрань 3
3
Сыктывкар 5
1
Таганрог 2
3
Тамбов 3
2
Тверь 3
1
Тобольск 4
1
Тольятти 4
3
Томск 4
3
Тула 3
1
Тюмень 3
1
Улан-Удэ 2
3
Ульяновск 4
2
Уссурийск 2
4
Уфа 5
2
Ухта 5
2
Хабаровск 2
3
Хасавюрт 1
4
Химки 3
1
Чебоксары 4
1
Челябинск 3
2
Чита 1
2
Череповец 4
1
Шахты 2
3
Щелково 3
1
Электросталь 3
1
Энгельс 3
3
Элиста 2
3
Южно-Сахалинск 8
6
Ярославль 4
1
Якутск 2
1