Объем производства мозаичных диспетчерских щитов. Телемеханика в энергоснабжении промышленных предприятий - мнемосхемы и электроаппаратура диспетчерских щитов и пультов

ПО ведения мнемосхемы и электронного журнала энергетического объекта

Диспетчерская информационная система - составная часть программного комплекса Модус.Она основана на приложении ведение мнемосхемы и электронного журнала диспетчера.

ПО ведения мнемосхемы и электронного журнала, вместе с совокупностью расширений, описаннных в разделах Интеграция с базами данных, Работа с данными телемеханики и другими расширениями, составляет Диспетчерскую информациионную систему .

Работа программы основана на ведении оператором оперативной схемы энергообъекта, представленной в графическом виде(мнемосхемы). Оператор вносит в схему изменения в соответствии с изменением состояния энергообъекта. Имеется возможность подключения системы сбора телеметрической информации, а также системы телеуправления, в этом случае программа приобретает возможности, описанные в разделе Работа с данными телемеханики .

Электронный журнал заполняется автоматически в соответствии с изменениями оперативной схемы.
ПО ориентирована на ведение схем любого уровня - ПЭС, РЭС, городских электрических сетей, схем электроснабжения промышленных предприятий, энергосистем, подстанций, электрических схем станций, аппаратуры релейной защиты и автоматики, устройств СДТУ.
Особую пользу ПО приносит на тех предприятиях, где имеются большие схемы электроснабжения при относительно небольшом количестве телемеханики. В первую очередь это городские сети, распредсети, промышленные предприятия.

Раннее это приложение называлось Электронный журнал, а до этого Оперативный журнал. В настоящее время эти названия не используются, так как они не совсем точно передают основное назначение программы.

ПО ведения мнемосхемы

Основные возможности:

  • Позволяет вести учет переключений как на первичной (коммутационные аппараты), так и на вторичной (состояние релейных защит и автоматики) схемах;
  • Обеспечивает проверку допустимости выполнения операций на основе правил переключений в электроустановках;
  • Позволяет вести переключения по бланкам или программам переключений, либо пооперационно;
  • Позволяет вести учет местонахождения ОВБ, ремонтных бригад, участков проведения ремонтных работ, мест аварий, установленных переносных защитных заземлений;
  • Позволяет вести энергообъектов на схемах
  • Имеет развитые средства печати состояний схемы (нормальное, оперативное, на заданный момент времени), обеспечивает поиск и выделение элементов схемы на схеме по ряду критериев;
  • Обеспечивает печать Электронного журнала, формирование отчетов по имеющимся в нем данным.

Сервисные функции журнала

  • Примеры выборок по журналу:
     - с момента регистрации оператора в системе;
     - с предыдущей регистрации оператора в системе;
     - изменения оперативной схемы за указанный период времени;
     - связанных с отличием оперативной схемы от нормальной;
     - аварийные переключения;
     - установленные/снятые переносные заземления, включенные/отключенные ЗН.
  • Отображение обесточенных и заземленных участков
  • Экспорт выборок в виде файлов.
  • Быстрый переход между записями в журнале, элементами схемы и пунктами в бланках переключений.
  • Показ отклонений состояния оперативной схемы от нормальной схемы и от состояния на момент последней сдачи смены.
  • Печать и отображение мнемосхем объекта
  • В состоянии на указанный момент времени
  • В текущем состоянии оперативной схемы
  • В нормальном состоянии схемы
  • Отображение оборудования неисправного, обесточенного, отшинованного, неиспользуемого и т.д.
  • Отображение цепочек кабельных и воздушных линий и ТП, входящих в состав фидера
  • Отображение во всплывающей подсказке ПС, питающего центра и РП от которого питается фидер
  • Диагностика некорректно запитанных фидеров
  • Возможность просмотра текущего состояния схемы и журнала другими пользователями в сети.

Сервисные функции схемы

  • Отображение результата выборки непосредственно на схеме.
  • Просмотр данных связанных с элементами схемы (например, паспортных или расчетных данных) из баз данных имеющихся у заказчика. Стандартный механизм для подключения таких баз встроен в ПО.
  • Настройка отображения схемы «на лету» (без перерисовки) в соответствии с принятым на предприятии стандартами или предпочтениями оператора.
  • Автоматическая расстановка направлений линий от питающего центра к потребителю
  • Автоматическое формирование и подсветка нормального (по нормальным токоразделам) и текущего (на определенный момент времени) фидеров.
  • В комплексе предусмотрена многостраничная система переходов от общей схемы сети до географической карты местности.

Выполняемые организационныые и технологические задачи:

  • Утверждение нормальной схемы и допуск пользователей к работе.
  • Прием (сдача) смены оперативным персоналом объекта, передача информации по смене.
  • Ведение оперативной схемы, ведение электронного журнала.
  • Использование системы подготовки и фиксации исполнения типовых и разовых бланков переключений и программ переключений.
  • Ведение списка текущих задач.

Виды записей в журнале

    Действия с объектами - фиксация переключений, установки снятия оперативного тока/блокировок, установка снятие защит и т.д.

    Квитирование телесигналов и сообщений о превышении значений установок.

    Проверочные действия, результаты обходов и осмотров.

    Переговоры между оперативным персоналом, распоряжения.

    Расстановка и учет выездных и ремонтных бригад по пунктам назначения.

    Установка/снятие мобильных элементов- переносное заземление, плакат, запетление и т.п.

  • Пометка мест аварии.

Редактор оперативных задач

В составе ПО ведения мнемосхемы и электронного журнала реализована программа «Редактор оперативных задач». Она предназначена для контроля за состоянием оперативных задач на рабочем месте диспетчера.

ПО позволяет:

    Cоставление оперативных задач посредством выполнения операций на электронном макете энергообъекта.

    Проверка оперативной задачи по мнемосхеме (макету) с контролем правильности выполнения операций:

      включение заземляющих ножей под напряжением;

      отключение разъединителей под нагрузкой;

      контроль оперативной блокировки;

      показ на схеме пунктиром отключенных электрических участков схемы и т.д..

    Отметки выполнения операций в оперативных задачах, чем обеспечивается контроль за реальным состоянием активных оперативных задач.

    Быстрый доступ и переключение между активными задачами.

    Сохранение активной задачи в файл и загрузка из файла в актуальном состоянии.

    Возможность просмотра мнемосхем энергообъектов.

    Возможность печати оперативной задачи в виде бланка переключений стандартной формы.

    Составление обычных бланков переключений и работа с ними.

    Подготовка и хранение базы данных типовых бланков переключений.

    Проверка возможности выполнения типового бланка переключений в текущем состоянии схемы энергообъекта.

    Создание обычных бланков переключений на основе типовых бланков в электронном виде и работа по ним.

В программе предусмотрен контроль за состоянием нескольких одновременно исполняемых оперативных задач. Диспетчер может переключаться между ними в окне списка оперативных задач. Редактор оперативных задач интегрирован с приложением ПО Ведения мнемосхемы и Электронного журнала.

Дополнительные журналы в составе ДИС

Начиная с версии 5.20 в состав ДИС входят ряд дополнительных журналов:

  • Изменения источника питания потребителей,
  • Технологических нарушений,
  • Заявок потребителей,
  • Дефектов оборудования..

Данные дополнительных журналов хранятся в БД ЭЖ и содержат информацию параметрах и времени события, энергообъекте, пояснительную часть, данные о лице, внесшего запись:
Разработанные журналы полностью интегрированы с электрической схемой. Обеспечен автоматический переход от записи журнала к элементу схемы и обратно. Также возможна работа журналов без схемы.
Все журналы позволяют формировать отчеты в формате Word

Журнал изменений источников питания
Журнал изменений источников питания позволяет вести учет изменения энергоснабжения потребителей.

Форма журнала изменения источников питания

Журнал регистрации технологических нарушений
В журнале технологических нарушений (ТН) регистрируются:

  • Время возникновение ТН
  • Объект возникновения ТН
  • Количество обесточенных ТП, ПС, объектов здравоохранения, теплоснабжения
  • Отключенная мощность
  • Время устранения ТН ввода в работу объект

Данные отчета об обесточенных абонентах формируются автоматически на основе заранее подготовленных справочников абонентов и анализа текущей конфигурации сети.

Форма журнала технологических нарушений

Форма записи журнала технологических нарушений

Журнал заявок потребителей о нарушении электроснабжения.
Для организации процесса регистрации заявок потребителей в ДИС разработан соответствующий модуль, позволяющий фиксировать информацию о полной или частичной потере электроснабжения, используя сформированные на предприятиях корпоративные информационные системы.

Форма журнала заявок потребителей

Форма записи журнала заявок потребителей

Журнал дефектов и неполадок с оборудованием и ход их устранения
Разработан модуль регистрации дефектов и неполадок с оборудованием, полностью интегрированный с электрической схемой. При этом обеспечен автоматический переход от записи к элементу схемы и обратно.
Модуль обеспечивает возможность выборки записей по:

  • планируемой дате устранения дефекта (с указанием конкретной даты либо с указанием периода),
  • подразделению, ответственному за устранение дефекта,
  • всем не устранённым дефектам, дефектам, срок устранения которых истек;

Модуль позволяет переносить сроки устранения дефекта.

Форма журнала дефектов

Форма записи журнала дефектов

Безопасность и юридические аспекты

Все изменения в журнал заносятся от имени диспетчера, заступившего на смену. Подделка и изменение задним числом записей в электронном журнале исключены. Для страховки от сбоев ПО возможно ведение твердой копии (печать) одновременно с занесением записей в журнал.

Подключение телесигнализации / телеуправления

Диспетчерскую информационную систему можно рассматривать как составную часть ОИК (верхний уровень), в котором реализована поддержка оперативных переключений и имеются широкие возможности интеграции.

В программное обеспечение встроена возможность приема телеинформации и телеизмерений, а также телеуправления энергетическими объектами через индустриальный программный интерфейс OPC. Этот программный интерфейс поддерживается многими современными комплексами телемеханики, а также системами ОИК/SCADA.

Обмен такими комплексами осуществляется без дополнительного программирования. В случае использования информации с систем, не поддерживающих OPC, стыковка может быть осуществлена на договорной основе силами разработчиков Модус либо другой подрядной организации (оптимильным обычно является разработка соответствующего ОРС-сервера).

Таким образом, программный комплекс можно рассматривать как составную часть ОИК(верхний уровень), в котором реализована поддержка оперативных переключений.

ООО «ТРЭИ ГмбХ», г. Пенза

В статье рассматривается автоматизированная система диспетчерского управления процессами распределения электроэнергии в электрической сети на АО «УК ТМК» с помощью мнемосхем. Подробно представлена структура системы и основные технические решения.

Энергетика — одна из стратегически важных отраслей нашей промышленности, основа экономической независимости и безопасности страны. Сегодня энергетика находится на пороге преобразований. В связи с этим эффективное управление энергетическими мощностями и распределением энергии имеет очень большое значение. Повышение эффективности работы генерирующих мощностей, а также установление оптимальных режимов распределения имеют большое значение и позволяют снизить стоимость энергии, а также получить максимальный сбыт продукции. В такой ситуации одним из приоритетных направлений совершенствования режимов управления объектами энергетики является построение современных автоматизированных систем управления производственными процессами (АСУ ТП). На многих предприятиях внедряются системы, позволяющие оперативно управлять энергетическими мощностями.

Разрабатываемая в настоящее время в Казахстане (г. Усть-Каменогорск) автоматизированная система диспетчерского управления электроснабжением АО «УК ТМК» с помощью мнемосхемы (сокращенное название АСДУЭ) является подобной системой эффективного управления.

Разрабатываемая система диспетчерского управления электроснабжением создается в целях повышения оперативности управления процессами распределения электроэнергии в электрической сети, сокращения времени на восстановление электроснабжения потребителей комбината после аварийных отключений, повышения производительности труда оперативного персонала в плановых работах и обеспечивает:

Отражение действительного положения масляных и вакуумных выключателей системы энергоснабжения комбината на мнемосхеме и АРМ диспетчера;

Виртуальное управление символами разъединителей, выключателей нагрузки, отделителей, короткозамыкателей на мнемосхеме и АРМ диспетчера с фиксацией времени и основания их коммутации;

Управление символами заземления линий и электрооборудования на мнемосхеме и АРМ диспетчера с фиксацией времени и основания их коммутации;

Контроль потребляемого тока на вводных ячейках и отходящих линиях на АРМ диспетчера;

Дистанционное управление масляными и вакуумными выключателями на объектах комбината с АРМ диспетчера;

Предупредительную и аварийную сигнализацию с объектов: обобщенную, срабатывания АВР, АПВ, отображение сработки электрических защит;

Отображение информации об аварийном отключении выключателя на АРМ диспетчера;

Сохранность в течение месяца всех событий на мнемосхеме и времени фиксации с возможностью вывода на печать;

Запись и сохранность в течение месяца оперативных телефонных переговоров диспетчера по каждой линии с фиксацией времени и с возможностью вывода на печать;

Визуализацию схемы электрической сети комбината и основных контролируемых параметров на мнемосхеме коллективного пользования.

Рис. 1. Трехуровневая система АСДУЭ

Структура системы

Электрическая сеть комбината представляет собой территориально распределенную структуру, состоящую из станций и подстанций с электрооборудованием, установленным в помещениях, а также на открытых распределительных устройствах. В основу построения АСДУЭ заложен принцип построения логической части на основе программируемой логики, то есть для реализации алгоритма управления, измерения и контроля используется программируемый контроллер TREI-5B-02. Запрограммированная логика алгоритма реализуется путем опроса фактического состояния входных сигналов, сравнения значений этих параметров с заданными в программе и при подтверждении диспетчером выполняемых действий выдачей управляющих выходных сигналов.

По своей архитектуре АСДУЭ представляет собой трехуровневую распределенную вычислительную систему с разделением по выполняемым функциям (рис 1).

Первым уровнем иерархии являются средства контрольно измерительных приборов, установленных непосредственно на локальных объектах электрической сети комбината, входящих в структуру данного проекта.

Второй уровень иерархии образуют контроллеры. Для этого уровня характерна географическая и функциональная распределенность аппаратных средств.

Третий уровень - уровень ОДС (оперативно-диспетчерская служба, автоматизированные рабочие места диспетчера, оперативного и управленческого персонала). Он строится на основе клиент-серверных технологий.

Рис. 2. Комплекс технических средств

Состав системы

В соответствии с назначением АСДУЭ в своем составе содержит:

Информационно-управляющую систему электрической сети комбината;

Мнемосхему коллективного пользования диспетчера комбината по электроснабжению.

Основными задачами, которые ставятся перед системой АСДУЭ, являются контроль действительного положения масляных и вакуумных выключателей ВМ (426 точек), контроль срабатывания устройств защиты, контроль потребляемого тока, управление символами электроаппаратов на мнемосхеме. Обеспечение требуемой надежности функционирования системы (резервирование мастер-модулей, возможность перехода с дистанционного управления на местное). Возможность замены модулей контроллера без остановки работы системы. Программно-аппаратная диагностика контроллера и входных сигналов. Наращивание функциональных возможностей системы с наименьшими затратами за счет применения единой серии контроллеров. Отображение фактической оперативной и архивной информации на общей мнемосхеме, мнемосхемах локальных объектов, трендах реального времени и трендах истории, печатных отчетах. Предлагаемые технические решения обеспечивают интеграцию АСДУЭ как составной части в общую сеть комбината.

АСДУЭ представляет собой набор шкафов управления и вспомогательного оборудования, а именно:

Шкафы с микропроцессорными контроллерами, предназначены для сбора и обработки информации от структурных элементов электрической сети комбината и дистанционного управления коммутационными электроаппаратами (ВМ) с автоматизированного рабочего места (АРМ) диспетчера;

Шкафы с устройствами связи с объектами (УСО), являются физическим и логическим продолжением шкафов микропроцессорных контроллеров с осуществлением аналогичных функций управления, измерения и контроля;

Шкафы с силовыми реле и преобразователями тока, предназначены для подключения к высоковольтным ячейкам с целью обеспечения управления масляными выключателями ячеек от микропроцессорных контроллеров и УСО, а также выдачи на контроллеры сигналов измеряемых токов;

Шкаф локального сервера ЛВС, предназначен для сбора информации от системных микропроцессорных контроллеров и последующего предоставления информации о состоянии, выполнении управляющих воздействий и неисправности технологического оборудования электрической сети комбината на мнемосхеме и АРМ диспетчера. Локальный сервер подключается к общей компьютерной сети комбината для просмотра технологической информации на удаленных компьютерах и сохранения архивной базы данных с глубиной 1 год на общем сервере комбината.

В состав шкафа локального сервера входят системы:

Автоматической цифровой записи аудиоинформации «СПРУТ-7А-7», позволяющей записывать аудиоинформацию от аналогово-цифровых каналов связи и регистрацию входящих (функция АОН) и исходящих номеров, даты, времени и длительности сеанса связи;

Контроллер системы отображения видеоинформации PLI 8-16, формирует для нее полиэкранное изображение и управляет работой всего комплекса оборудования системы отображения.

Система отображения видеоинформации на базе четырех видеокубов SYNELEC C50X-BB-SL с диагональю 50’’ предназначена для визуализации (отображения) фактической конфигурации электрической сети комбината, оперативной информации в режиме реального времени, а именно:

Потребление тока основными потребителями комбината;

Состояние коммутационных аппаратов электрической сети;

Отображение процесса выполнения оперативных переключений оперативным персоналом (диспетчер, дежурный);

Отображение аварийных ситуаций, возникающих в электрической сети;

Контроль вывода в ремонт, и подготовку оборудования к ремонту;

Контроль стационарных и переносных заземлений.

Программное обеспечение верхнего уровня реализовано: iFIX Plus SCADA Pack Server Version 3.0 (количество точек не ограничено), iFIX Standard HMI Pack Runtime Version 3.0 (количество точек не ограничено), iFIX iClient Runtime Version 3.0, OPC сервер Nautsilus (USB). На контроллере видеокубов установлено ПО Windows 2000, SP3, на сервере Windows SERVER 2000, на автоматизированных рабочих местах Windows XP Pro, Sp2.

Основные технические решения

Укрупненная схема комплекса технических средств

Как уже упоминалось, АСДУЭ представляет собой трехуровневую распределенную систему. Второй уровень АСДУЭ обеспечивает выполнение функций: автоматизированного управления исполнительными механизмами масляных выключателей ВМ; первичной обработки и нормализации сигналов от измерительных трансформаторов тока, он строится на основе контроллеров Trei-5B-02 фирмы ООО «ТРЕИ ГМБХ», г. Пенза, Лицензия №19-02. Верхний уровень реализует функции человеко-машинного интерфейса и строится на основе программных продуктов фирмы General Electric. На рис. 2 приведена укрупненная схема комплекса технических средств АСДУЭ. Как можно видеть из схемы, Система управления имеет распределенную структуру и состоит из:

Мнемосхемы коллективного пользования диспетчера комбината по электроснабжению;

Локального сервера;

Станции диспетчера и инжиниринга (АРМ 1 и 2);

Системных контроллеров ШК1-ШКn.., входящих в их состав удаленных УСО и шкафов с силовыми реле и преобразователями тока. Связь между контроллерами осуществляется по Ethernet 100 мб/с, что обеспечивает высокую скорость обмена для получения необходимой информации.

Главный контроллер и SCADA iFIX Plus Pack Server сообщаются по технологической сети Ethernet 100 Мb. Стабильная работа мнемосхемы коллективного пользования, локального сервера и станций операторов обеспечивается источниками бесперебойного питания установленными в операторской.

Главный контроллер ШК0 отвечает за связь с локальным сервером и контроль за состоянием оборудования электрической сети комбината через опрашиваемые системные контроллеры ШК и входящие в их состав удаленные УСО. Полученные данные главный контроллер передает для отображения на SCADA, а также через него осуществляется супервизорное управление системными контроллерами (изменение уставок, режимов работы, приоритеты). Для повышения надежности работы АСДУЭ, и предотвращения пропадания связи локальных объектов сети с главным контроллером на нем применено резервирование процессорной части и блоков питания. Такая конфигурация позволит увеличить живучесть системы. Структурная схема, показанная на рис. 2, дает представление о распределении технических средств на объектах электрической сети комбината. В данном случае, применение протокола RS-485 (STBUS) и Ethernet дает возможность наращивания системы и экономии за счет кабельной продукции при подключении удаленных объектов. Сервер выполняет функции сбора, хранения, архивирования и выдачу оперативных данных. Станция оператора предусматривает дистанционное (супервизорное) управление коммутационными электроаппаратами ВМ. Выбор SCADA iFIX облегчает интеграцию строящейся АСУ ТП с имеющимися средствами автоматизации. При необходимости возможна передача технологических данных на общий сервер комбината. Хранение технологических уставок осуществляется в энергонезависимой памяти контроллера, что позволяет сохранять работоспособность системы при отказе или отсутствии связи с локальным сервером.

Данная конфигурация системы позволяет: уменьшить время восстановления работоспособности системы за счет модульности (модули-мезонины) и быстрой заменяемости ее элементов. Замена отдельного вышедшего из строя модуля или контрольно измерительного прибора может осуществляться без остановки работы системы; обеспечить хорошие показатели надежности за счет резервирования и дублирования наиболее значимых компонентов системы. В частности, при выходе из строя одного из мастер-модулей или при пропадании связи с одним из них будет осуществлен переход на резервный.

Краткое описание

технических компонентов

Микропроцессорный

контроллер

Устройство TREI-5B-02 предназначено для локальных и распределенных систем автоматического контроля и управления технологическими процессами на промышленных предприятиях с нормальным и взрывоопасным производством.

Изделие имеет сертификат об утверждении типа средств измерений № 2641 (Казахстанский № 1503), TUV сертификат, разрешение на выпуск и применение №507-ЭВ-1Я1, производитель имеет сертификат соответствия системе менеджмента качества ISO 9001 №РОСС RU. ИС50.К00019. Последовательный интерфейс на базе RS-485 и широкая номенклатура модулей ввода/вывода позволяют создавать распределенные, многоуровневые и многофункциональные системы. Единый коммуникационный протокол ST-BUS упрощает программирование и сбор информации с каналов ввода/вывода. Все структуры входных и выходных данных унифицированы. Процессорная часть контроллера - это РС совместимый компьютер с необходимым набором внешних устройств. Операционная система реального времени QNX и среда разработки IsaGraf. За основу конструкции контроллера TREI-5B-02 принят формат «3 U Евромеханика». Корпус имеет открытое или закрытое исполнение, при необходимости с креплением на DIN-рейку. Модули с размером печатных плат 100x160 мм имеют на лицевой панели световую индикацию и 48-контактный разъем сзади для подключения питания, последовательного интерфейса и каналов ввода/вывода. Базовым интерфейсом контроллера является последовательный интерфейс ST-BUS на базе RS485, что позволяет создавать распределенные системы протяженностью физической линии без повторителей до 1200 м. Максимальная скорость интерфейса до 1,25 Mbod. Модули ввода/вывода имеют свой Pic-процессор, могут работать автономно. Сбор информации по коммуникационному протоколу ST-BUS от модулей ввода/вывода осуществляет мастер-модуль М701Е или промышленный компьютер с последовательным интерфейсом RS485. Номенклатура модулей ввода/вывода позволяет создавать многоканальные и многофункциональные системы. Универсальный модуль, комплектуемый мезонин-модулями серии TREI-5, имеет полный набор подключаемых устройств. Многоканальные однотипные модули дискретного и аналогового ввода/вывода, импульсного ввода предоставляют до 4000 каналов на один мастер-модуль.

Мастер-модуль выполняет основные вычислительные функции контроллера.

В своем составе он содержит:

Базовую плату мастер-модуля;

Процессорный модуль с процессором Pentium;

Плату коммуникационного адаптера Ethernet 10/100;

Гальванически развязанные порты RS485;

Контроллер шины ST BUS;

Энергонезависимое статическое ОЗУ;

Flash-диск;

ИК-порт;

Сторожевой таймер.

В шасси устанавливается следующие модули ввода/вывода (все модули ввода/вывода общепромышленного исполнения):

Модуль ION M732U - универсальный 8-канальный модуль ввода/вывода.

Конкретный тип канала задается установленным мезонином. Мезонин представляет собой монтируемый на модуль блок первичного преобразования сигнала. Применяются мезонины типа IDIG-24VDC, используемые для подключения дискретных сигналов 24VDC, и мезонины IANS 0-20 мА для подключения входных аналоговых сигналов 0-20 мА;

Модули M754D - 32 входных дискретных канала 24VDC;

Модули M754O - 32 выходных дискретных канала 24VDC;

Модули M743D - 16 входных дискретных канала 24VDC;

Модули M743O - 16 выходных дискретных канала 24VDC.

Все каналы изолированы. Кроме модулей ввода/вывода и мастер-модуля в шасси устанавливается модуль питания Р701 А, мощностью 40 Вт и обеспечивающий питание элементов контроллера. Для мезонинов аналогового ввода основная приведенная погрешность не превышает 0,025%. Для мезонинов аналогового вывода основная приведенная погрешность не превышает 0,1%. Преобразование осуществляется 16-разрядным ЦАП. Подробное описание модулей представлено на сайте фирмы TREI-GmbH.

Система отображения видеоинформации

В предлагаемом решении используются проекторы, построенные по технологии DLP™ от Texas Instruments. Технология DLP™ является стандартом «де- факто» в области видеостен благодаря отсутствию эффекта «выгорания» пикселей, свойственному плазменным панелям. Заявленная производителем наработка на отказ DLP проектора составляет не менее 100 000 часов (более 10 лет непрерывной работы). Предлагаемое решение базируется на XGA (1024х768) видеокубах Clarity-Synelec. Видеокубы имеют встроенный процессор, позволяющий обрабатывать поток цифровой информации со скоростью до 16 000 Мб/с, что в десятки раз больше быстродействия аналогичных систем. В отличие от встроенных сплиттеров - простых разделителей входящего сигнала, видеокубы Clarity-Synelec являются полноценным многоканальным цифровым процессором. Два входа DVI позволяют одновременно и независимо отображать два масштабируемых и перемещаемых информационных окна. Наличие независимых двух входов у видеокуба обеспечивает высокую надежность оборудования: при выходе из строя одного канала обработки видеоинформации второй канал остается работоспособным. Для получения наивысшего качества изображения в видеокубах Synelec применяются сверхчерные антибликовые просветные экраны. На сегодняшний день они являются наиболее качественными и высокотехнологичными просветными экранами на мировом рынке. Эти экраны предлагаются компанией Clarity-Synelec при самых высоких требованиях к качеству изображения (к графическому разрешению, четкости, контрастности). Они характеризуются широким сектором обзора и отсутствием бликов даже при сильной засветке посторонними источниками света (сверхчерный экран поглощает 99,5% света от внешних источников). По своим свойствам экраны обеспечивают практическое отсутствие межэкранных зазоров, а, следовательно, и наиболее комфортные условия наблюдения. Микроскопические оптические элементы обеспечивают высокую равномерность яркости на всей поверхности экрана, Широкий угол обзора: 180 градусов - по горизонтали, 180 градусов - по вертикали. Обеспечение наилучшей четкости и контрастности при отображении сигнала с высоким графическим разрешением обеспечивает возможность эффективной очистки загрязнений (большинство линзово-растровых оптических просветных экранов имеют микролинзовую наружную поверхность и позволяют очищать загрязнения только с помощью сжатого воздуха. Экраны имеют гладкую защитную наружную поверхность, допускающую эффективное очищение). Контроллер видеостены, сетевой контроллер PLI 8-16,- это мощная управляющая система для отображения в реальном масштабе времени насыщенной компьютерной графики и видеоизображений. В нем сочетаются современная аппаратная платформа и программное обеспечение, гарантирующие высокую производительность, надежность и удобство использования.

Видеостена может объединять в себе до 80 видеокубов. Контроллер PLI 8-16 формирует для нее полиэкранное изображение и управляет работой всего комплекса оборудования системы отображения. Благодаря особенностям архитектуры контроллера оцифровка и отображение видеоисточников происходит в режиме реального времени без загрузки центрального процессора и без потерь информации.

Контроллер использует самые передовые технологии и протоколы. В качестве интерфейса для передачи отображаемой информации выбран цифровой протокол DVI. Такое решение позволило избавиться от шумов, помех, частотных и фазовых искажений сигнала, характерных для аналоговых каналов передачи данных. Благодаря отсутствию в системе аналоговых каналов передачи информации изображение отличается превосходным качеством и стабильностью.

Контроллер PLI 8-16 позволяет запустить любое приложение из сети отображая его в окне либо на всем полиэкране, то есть так, как того требует сценарий отображения. Приложения из сети под управлением UNIX также могут быть запущены и продемонстрированы на полиэкране аналогичным образом. Количество окон с приложениями практически не ограничено. Каждое окно можно масштабировать, перемещать по экрану видеостены или увеличивать до размеров всего экрана. Контроллер прост в эксплуатации и не требует от оператора, знакомого с работой ОС Windows, каких-либо особых навыков. Отличительными особенностями контроллера PLI 8-16 являются:

Модернизированная аппаратная платформа, позволяющая строить полиэкраны размером до 80 видеокубов при использовании одного контроллера PLI. При использовании более сложных конфигураций размер видеостены не ограничен;

Высокопроизводительные графические процессоры с цифровыми выходами, обеспечивающими отображение сигнала без шумов, искажений и помех;

Возможность работы под управлением ОС Windows и Linux. Кроссплатформное программное обеспечение позволяет использовать контроллер как в сетях Windows и Unix, так и в смешанных сетях;

Универсальность и многозадачность. Контроллер может одновременно исполнять пользовательские приложения, оцифровывать видеосигналы, импортировать информацию из локальной вычислительной сети и отображать результаты работы на видеостене в виде свободно перемещаемых и масштабируемых окон;

Гибкость и масштабируемость. Контроллер легко перенастраивается для решения разнообразных задач и наращивается при необходимости расширить функциональность системы или размер полиэкрана. Промышленное исполнение контроллера позволяет устанавливать его в стандартный 19’’ рэковый шкаф, который обеспечивает повышенную помехозащищенность и улучшенную вентиляцию компьютерных компонентов.

Сетевой контроллер Clarity-Synelec PLI 8-16 позволяет:

Суммировать разрешения отдельных видеокубов, обеспечивая чрезвычайно высокое графическое разрешение полиэкрана (например, для видеостены в конфигурации 2х2 видеокубов разрешение полиэкрана составляет 1536х2048 точек);

Работать под управлением ОС Windows и Linux;

Исполнять локальные программы (например, используемые заказчиком SCADA-приложения);

Работать с сетевыми базами данных;

Отображать на видеостене копии окон сетевых приложений или копии мониторов сетевых рабочих станций;

Работать с любым изображением, как с обычным окном Windows: перемещать, масштабировать, сворачивать или разворачивать вплоть до размера всего полиэкрана;

Управлять сценариями отображения (в том числе с удаленных рабочих станций);

Формировать, сохранять и вызывать сценарии, требуемые для отображения в данный период времени (например, при разных оперативных ситуациях нормальная/аварийная);

Производить автоматический мониторинг оборудования с отображением состояния устройств (в том числе на удаленных рабочих станциях);

Формировать сообщения об ошибках, сбоях и неисправностях, производить заранее заданные действия, соответствующие каждой описанной проблеме (изменять сценарий, выключать и включать лампы и др.);

Отслеживать заданные сообщения в компьютерной сети и в последовательных портах, производить заранее заданные действия, соответствующие каждому описанному сообщению (часть искомого сообщения может использоваться в качестве переменной для выполняемого действия);

Производить заданные действия по расписанию (для каждого действия можно установить: время суток, дни недели, даты);

Сохранять в виде файла мгновенный «снимок» изображения на всем полиэкране.

Рис. Взаимодействие логических подсистем в момент генерации рисунка

Краткое описание программных компонентов

Как уже упоминалось выше, контроллер TREI-5В-02 является PC совместимым программируемым логическим контроллером. Этот контроллер работает под управлением операционной системы QNX. Архитектура этой операционной системы спроектирована специальным образом для применения в системах реального времени, что делает ее наиболее оптимальной для применения в качестве операционной системы контроллеров. Образ операционной системы и необходимые контроллеру файлы располагаются на flash-диске или disk-on-chip. На контроллере запущена целевая задача ISaGRAF, которая осуществляет опрос модулей ввода/вывода, выполняет алгоритмы. Целевая задача использует конфигурационный файл, содержащий описание алгоритмов и описание аппаратной конфигурации контроллера. Конфигурационный файл готовится с помощью программного пакета ISaGRAF. ISaGRAF инструментальная CASE система для технологического программирования контроллеров. Разработка фирмы CJ International. ISaGRAF - это полная поддержка всех языков стандарта IEC 1131 3. Среда разработки предоставляет полный набор средств для интерактивного создания программ, их эффективной отладки, документирования и архивации проектов.

Верхний уровень АСУ ТП строится на базе SCADА пакета iFIX фирмы General Electric. Данный программный пакет включает в себя как средства обработки, накопления и отображения информации, так и средства конфигурирования, позволяющие настроить компоненты системы в соответствии с требованиями конкретного объекта. Связь между контроллером и SCADA-системой обеспечивается с помощью ОРС-сервера фирмы Nautsilus, в качестве среды используется витая пара, транспортным протоколом является Ethernet.

Специализированное программное обеспечение

Для контроллера PLI 8-16 поставляется специализированный программный пакет Com.Base, представляющий собой интегрированную многопользовательскую систему управления оборудованием видеостены и процессом отображения информации. Com.Base разработан компанией Synelec Telecom Multimedia в качестве универсального программного комплекса, предоставляющего единый удобный и понятный пользовательский интерфейс для автоматизированного управления всем многообразием оборудования и процессов, присущих профессиональным системам отображения. Архитектура контроллера и программное обеспечение обеспечивают беспроблемную интеграцию в существующую вычислительную сеть. Использование TCP/IP в качестве основного протокола общения всеми устройствами и модулями системы позволяет производить удаленную диагностику и администрирование системы, в том числе - через Интернет. Для удаленного управления сетью или хост-компьютерами и разделения сетевых ресурсов может быть установлено дополнительное программное обеспечение. Полнофункциональный программный продукт Com.Base компании Synelec предоставляет диспетчеру всеобъемлющий набор средств управления видеостеной. Благодаря своей простоте и дружественному пользовательскому интерфейсу Com.Base обеспечивает эффективный контроль за системой на трех основных этапах работы системы: а) настройка системы, б) работа системы, в) обслуживание системы.

Рассмотрим взаимодействие основных подсистем в процессе автоматического создания мнемосхемы в среде iFix, находящейся в режиме конфигурирования: дан старт с задачей на построение рисунка, и блок «SOLOMON» начинает свою работу. Его цель - одна из первостепенных: подготовка, контроль и обслуживание основы объектной модели невидимого каркаса будущей схемы. Необходимые потоки данных запрашиваются через посредника связи «HERMES», который, в свою очередь, осуществляет контакт с хранилищем внешней информации посредством подсистемы «DARIUS» поддерживающей множественность и разномастность источников и преобразующей данные к единому внутреннему стандарту. Теперь для освоения нового типа хранилища достаточно, лишь унаследовав шаблон от специализированного класса, наполнить его реализацией доступа и обработки. При необходимости информационные каналы шифруются, дешифруются блоком «ARES». Важную роль здесь играет абстрактная сущность «ProClass», которая и является основным строительным материалом логики объектных конструкций. Ее структура не зашита в код, а динамически формируется с применением паттерна абстрактной фабрики и файлов инициализации, реализуя, конкретные потомки. Таким образом, появляется возможность вносить изменения в классы в не поля кода программы. Акцент сделан на двух составляющих - выделена логика (смысловое наполнение объекта) и делегирован набор скриптов, сопоставленных с ней. Создаются объекты, производится их инициализация. В объекты вносятся связи и группировки согласно создаваемой схеме. Опционально разработан механизм автоматической генерации имен тегов, который опирается на логическое положение объекта и его окружение. Как итог, подготавливается коллекция всех объектов задачи в едином хранилище.

Фактически блок «LEONARDO» отрабатывает три режима:

1_Подготовка к применению минимально неделимых графических объектов с точки зрения системы с конечным результатом - библиотекой примитивов («Atoms»). Необходимость этапа, прежде всего, обусловлена идеей ослабления тесной взаимосвязи с используемой SCADA средой.

2_На основании полученной библиотеки графических «атомов» производится построение более сложных сущностей класса «Symbol» - логически законченных образов внешнего вида экземпляров прообъектов. При необходимости происходит активизация их анимации. Каждый вид символа представлен в единственном числе.

3_Используя временное хранилище экземпляров символов и объектное поле, подготовленное блоком «SOLOMON», производится конечное создание элементов мнемосхемы и их размещение на рисунке. Передача информации между блоками и здесь проходит через единый центр. По окончанию вновь созданный рисунок сохраняется и помещается в логическое хранилище визуальных форм, чтобы позже быть использованным подсистемой интерфейса работы с пользователем «MEMPHIS».

Обозначение:

СШМК.421457.008-ДЩ

В составе автоматизированной системы управления энергоснабжением (АСУЭ) программно-технического комплекса «Космотроника» (ПТК «Космотроника») предусмотрены различные рабочие места специалистов, в том числе рабочее место диспетчера - диспетчерский мнемощит.

Диспетчерский мнемощит служит для оперативного визуального контроля и автоматической регистрации информации о состоянии объектов, входящих в систему диспетчерского управления. Отражает принципиальную схему электроснабжения подстанций объединения с необходимым уровнем детализации, оснащается телемеханикой и световыми элементами, позволяющими фиксировать оперативные переключения в автоматическом режиме.

Рисунок 1. Внешний вид диспетчерского мнемощита

Основные функции мнемощита:

  • наглядное отображение схемы энергоснабжения объектов диспетчерского управления,
  • регистрация состояний объектов для выполнения оператором возложенных на него функций;
  • отображение связей и характера взаимодействия управляемого объекта с другими объектами;
  • сигнализация об изменениях в работе объектов;
  • быстрое выявление возможности локализации и ликвидации неисправности.

Состав мнемощита

Диспетчерский мнемощит является современной модульной конструкцией и отличается повышенной надежностью и качеством изготовления. Состоит из следующих основных узлов:

  • несущей конструкции;
  • самонесущего фасада с нанесенной графической схемой;
  • системы управления, включая контроллер мнемощита, модули управления индикаторами;
  • системы питания;
  • программного обеспечения.

Состав комплекта оборудования зависит от параметров заказанного мнемощита, на основании разработанной проектной документации.

Несущая конструкция

Несущая конструкция щита выполнена из легких стальных профилей, соединенных между собой при помощи винтов и специальных соединительных элементов. Все элементы несущей конструкции защищены от коррозии.

Набор профилей конструкции позволяет смонтировать несущую установку любого отдельно стоящего диспетчерского щита высотой не более 6500 мм и радиусом кривизны фасада не менее 6000 мм, длина щита при этом не лимитируется. Высота и длина щита изменяется с шагом 24 мм, тогда как радиус кривизны фасада может меняться плавно. Допустимо исполнение щита со сменным радиусом кривизны фасада, например по гиперболоиде. Типовая ширина щита составляет 580 мм в случае, если щит имеет высоту более 3000 мм. Для более низких щитов глубина может быть уменьшена до 400 мм.

На рисунке 3:
Н - полная высота щита, L - общая длина щита, без ограничений;
s - высота регулируемых подпорок, от 30 до 80 мм;
р - высота подставки, > 0;
g - толщина окантовки фасада, 5 мм;
Но - высота фасада, n×24 мм;
Lo - длина фасада, m×24 мм.

В стандартном исполнении несущая конструкция щита открыта с задней стороны. По заказу можно изготовить конструкцию, полностью закрытую сворачивающимися ширмами. Варианты исполнения приведены на рисунке 4.

На рисунке 4: 1 - прямое расположение;
2 - изогнутый щит при радиусе изгиба не менее 6000 мм;
3 - ломаный щит.

Рисунок 5. Пример самонесущего фасада

Самонесущий фасад

Фасад строится из мозаичных элементов с размерами модуля 24×24 мм. Мозаичные элементы выполнены из трудно воспламеняющейся пластмассы группы ABS или PC. Каждый элемент состоит из корпуса и фишки мозаики. Корпуса снабжены системой фиксаторов, которые обеспечивают их взаимное соединение, крепление мозаичной фишки, соединение с активным модулем (сигнализационным) а также крепление элементов служащих для соединения фасада с несущей конструкцией диспетчерского щита. Пример самонесущего фасада приведен на Рис.5.

Фасад монтируется к верхнему и нижнему краю несущей конструкции в полосе шириной по два модуля при помощи выравнивающих его шпилек (4 шт./м). Конструкция фасада позволяет монтировать в его плоскость большое количество типовых измерительных приборов, указателей, регуляторов и мониторов. Толщина самонесущего фасада составляет 37 мм.

Фасадные элементы щита могут быть следующими:

  • пассивные фишки (различные элементы схем, буквы и цифры любых цветов);
  • светодиодные модули (пассивные фишки с элементами схем и отверстиями под светодиоды и светодиоды различных цветов и размеров);
  • цифровые индикаторы (различной высоты и количеством отображаемых цифр);
  • поворотные элементы (используются для отображения нетелемеханизированных коммутационных аппаратов);
  • переносные фишки.

Система управления

Предназначена для передачи данных с ПО верхнего уровня системы диспетчерского управления и отображения их на диспетчерском щите.

Состоит из следующих элементов:

  • модули управления светодиодными индикаторами (УДС-1);
  • модули управления цифровыми индикаторами (УДС-2);
  • преобразователи интерфейса;
  • оптический щуп;
  • контроллер диспетчерского щита.

Обозначение:

СШМК.468153.021

Краткое описание:

Предназначен для управления работой отдельных светодиодов, приёма и передачи данных по интерфейсу RS-485 со скоростью обмена от 1200 до 115200 bps. Обеспечивает функцию двух режимов яркости свечения светодиодов: дневной и ночной. В процессе настройки диспетчерского щита выдаёт номер модуля и номер канала конкретного светодиода. Имеет режим самоконтроля (считывание состояния памяти модуля), а также режим эха (подтверждения срабатывания светодиода). Дополнительно имеет возможность считывания данных с датчика температуры окружающего воздуха, передачу через RS-485 и дальнейшим отображением на индикаторе щита.

  • Число каналов: 64
  • Питание модуля: 5В±0,25В
  • Максимальноеудаление от сервера при скорости передачи данных 115200 bps: 100 м
  • Размеры: 202 х 113 х 38 мм
  • Вес модуля: 200 г

Обозначение:

СШМК.468153.031

Краткое описание:

Предназначен для управления работой цифровых индикаторов, приёма и передачи данных по интерфейсу RS-485 со скоростью обмена от 1200 до 115200 bps. Обеспечивает функцию двух режимов яркости свечения цифровых индикаторов: дневной и ночной. В процессе настройки диспетчерского щита выдаёт номер модуля и номер канала конкретного индикатора. Дополнительно имеет возможность считывания данных с датчика температуры окружающего воздуха, передачу через RS-485 и дальнейшим отображением на индикаторе щита.

  • Число каналов: 64
  • Количество семисегментных знаков, управляемых одним модулем: 8
  • Коммутируемый ток (дневной/ночной режим): 20мА / 10мА
  • Питание модуля: 5В±0,25В или 12В±1В
  • Максимальное удаление от сервера при скорости передачи данных 115200 bps: 100 м
  • Максимальное количество модулей в одной цепи RS-485: 256
  • Время самоконтроля одного модуля: 0,2 сек
  • Диапазон температур, измеряемый датчиком: -55 … +125С
  • Точность измерения температуры датчиком: 0,5С
  • Время преобразования температуры: 750 мсек
  • Потребляемая мощность: не более 6.5 Вт
  • Размеры: 202 х 113 х 38 мм
  • Вес модуля: 200 г

Модуль преобразования интерфейса «RS-232» в интерфейс «RS-422/485»

  • 1 порт «RS-232» (линии RXD и TXD)
  • 1 порт «RS-422/485» (линии RXD и TXD)
  • Максимальная скорость передачи данных: 115200 bps
  • Гальваническая изоляция: не менее 2500 В
  • Питание модуля: 5В±0,25В
  • Потребляемая мощность: не более 0.5 Вт
  • Размеры: 70х50 мм
  • Диапазон рабочих температур: –40 С …+ 85 С
  • Вес модуля: 50 г

Оптический щуп

Оптический щуп используется в процессе настройки диспетчерского щита. Предназначен для определения адресов модулей управления светодиодными индикаторами и их каналов, с последующей записью полученной информации в базу данных АРМ «Телемеханика». Щуп представляет из себя фотодатчик с открытым оптическим каналом, преобразующий модулированный световой поток в электрический сигнал и передающий его на контроллер.

Контроллер диспетчерского щита

Персональный компьютер с установленным программным обеспечением ПТК «Космотроника». Выполняет роль управляющего контроллера, принимая данные через локальную сеть, и выдавая их на модули УДС-1 и УДС-2 через интерфейс RS485. Отдельный порт предназначен для подключения оптического щупа в процессе наладки.

Система питания

Питание мнемощита осуществляется напряжением переменного тока 220В. На каждой секции диспетчерского мнемощита установлены розетки, к которым подведен питающий кабель. К розеткам подключают блоки питания. К каждому БП можно подключить от одного до нескольких модулей управления.

Для реализации функции автономной работы мнемощит оснащается источником (источниками) бесперебойного питания.

Преобразователь напряжения

Предназначен для питания модуля управления светодиодными индикаторами, модуля управления цифровыми индикаторами и модуля преобразования интерфейса.

Краткое описание:

Блок питания 220/24В служит для преобразования переменного напряжения сети 220В в стабилизированное напряжение 24В. Имеет встроенное зарядное устройство для заряда аккумуляторов. Металлический корпус, крепится на DIN-рейку.

Основные технические характеристики:

  • Входные и выходные цепи гальванически изолированы
  • Обеспечивает ограничение начального импульса тока и напряжения
  • Защита от короткого замыкания и перенапряжения на выходе
  • Встроенный модуль зарядного устройства аккумуляторов
  • Входное напряжение
    • переменного тока: 90…264 В
    • постоянного тока: 110…370 В
  • Частота входного переменного напряжения: 47…63 Гц
  • Выходное напряжение: (24±1)В
  • Выходное напряжение (батарея): 19…30В
  • Максимальный выходной ток, А: 2,0
  • Порог срабатывания защиты по выходному току, А: ≤2,4
  • Емкость аккумулятора, А*ч
    • рекомендуемая: 1,3
    • максимальная: 4,5
  • Защита от перегрузки: есть
  • Защита от перенапряжения: есть
  • Защита от перезаряда аккумулятора: есть
  • Тест работоспособности аккумулятора: есть
  • Выход отсутствия входного питания: есть
  • Выход мониторинга разряда и неисправности аккумулятора: есть
  • Металлический корпус
  • Степень защиты корпуса: IP20
  • Способ монтажа: 35 мм DIN-рейка
  • Габаритные размеры: 112 x 57 x 120 мм
  • Масса: не более 300 г
  • Диапазон рабочих температур: –40°С …+ 65°С

Программное обеспечение

Программное обеспечение управления диспетчерским мнемощитом интегрировано в АСУЭ ПТК "Космотроника" и включено в состав ПО АРМ "Телемеханика". В настройках АРМ «Телемеханика» активируется модуль «Редактор управления щитом». Поэтому, при работе диспетчера нет необходимости запускать сторонние программы управления мнемощитом.

В случае, если диспетчерский щит поставляется в составе сторонней системы диспетчеризации (не Космотроника), то Заказчику предоставляется необходимое ПО для интеграции с программной системой верхнего уровня по стандартным протоколам.

При первоначальном запуске ПО мнемощита и переконфигурировании диспетчерского мнемощита в процессе эксплуатации необходимо использовать (настроить) следующие программы:

  • Коммуникационный сервер «Космотроника»;
  • «Настройка БД АРМ на работу со щитом»;
  • «Настройка диспетчерского щита».

Коммуникационный сервер "Космотроника"

Коммуникационный сервер является промежуточным звеном между контроллером диспетчерского щита, модулями УДС-1, УДС-2 и программой верхнего уровня АРМ «Телемеханика». Он выполняет следующие функции:

  • организация связи с существующей системой сбора данных
  • организация связи с контроллерами по различным каналам связи
  • периодическое тестирование канала связи и проверка состояния связи с абонентами
  • ведение системного протокола и протокола работы каналов связи
  • прием информации об объекте автоматизации от контроллеров
  • занесение информации в базу данных
  • ретрансляция принимаемых данных в различных протоколах на удаленные сервера, АРМы, диспетчерские щиты
  • ретрансляция контроллерам команд на телеуправление
  • параметризации контроллеров
  • отображение состояния и режимов работы каналов связи в различных окнах

Кроме того, посредством коммуникационного сервера осуществляется интеграция со сторонними системами по стандартным протоколам.

Настройка БД АРМ на работу со щитом

Окно программы "Настройка БД АРМ на работу со щитом"

Программа "Настройка БД АРМ на работу со щитом" является частью ПО АРМ "Телемеханика" и предназначена для автоматизации рутинного процесса составления таблиц в БД настроек АРМ и экранных форм при подготовке работы со щитом.

Настройка диспетчерского щита

Окно программы "Настройка диспетчерского щита"

Программа предназначена для автоматизации процесса назначения выводов светодиодов контактам УСО (УДС-1) в процессе монтажа или реконфигурации щита. При помощи оптического щупа определяется номер УСО и номер канала. Также возможно вручную ввести номер УСО и номер канала. Результаты назначения вносятся в таблицы БД настроек АРМ для дальнейшего использования в АРМ «Телемеханика». В любой момент времени возможна визуальная проверка правильности привязки конкретного сигнала, выбрав его в таблице и выдав команду на включение светодиода.

Назначение . Мнемосхема (экранная форма) – наглядное графическое изображение технологического процесса, интегрированное со средствами контроля и управления. Она является важнейшим источником информации о характере и структуре связей, текущем состоянии переменных (в том числе связанных с нарушением технологических режимов, авариями и т. п.) и позволяет оператору-технологу:

· облегчить запоминание хода технологического процесса и назначения устройств и органов управления;

· определить способы действия при различных режимах работы объекта;

· способствовать упрощению поиска и опознания нужной информации для оперативного принятия правильных решений.

Графические компоненты . Все SCADA-системы имеют в своем составе средства, позволяющие создавать как статические элементы мнемосхем (контурные изображения технологических аппаратов, трубопроводы и т. д.), так и оживлять (анимировать) эти элементы (создавать динамические объекты). В состав этих средств входят:

· наборы графических примитивов рисования (линия, прямоугольник, эллипс, кривые, текст) и средства их компоновки для создания уникальных собственных объектов);

· готовые библиотеки типовых графических объектов: технологические объекты (аппараты, механизмы, машины и т. д.), табло, указатели, ползунки, кнопки, переключатели, служащие для отображения переменных и управления процессом. Данные библиотеки могут быть расширены пользователем. При построении мнемосхемы вначале осуществляется прорисовка

статического изображения рабочего окна. Обычно это аппараты технологического процесса или их технологическая последовательность, трубопроводы, фон, поясняющий текст и т. п.

Следующим шагом является придание мнемосхеме динамики, т. е. анимация нарисованных (или выбранных из библиотек) элементов. Под анимацией понимается способность элементов менять свои свойства при изменении переменных технологического процесса. Изменяемыми свойствами являются толщина, цвет и стиль линии, цвет и стиль заливки (если это фигура с заполнением), а также размеры, положение и ориентация элементов. Предусматривается также непосредственный ввод переменных (цифрами и текстом, ползунковыми устройствами) и управление процессом с помощью кнопок и переключателей (Пуск/Останов, Включение/Выключение, Вызов Окна и т. д.).

Принципы построения . При большом разнообразии технологических процессов спроектировать хорошую мнемосхему во многом искусство, но можно рекомендовать общие принципы построения:

лаконичность и наглядность – мнемосхема должна быть простой (контуры и пропорции аппаратов приближены к виду реальных прототипов), не должна содержать второстепенных элементов, а отображаемая информация четкой и конкретной, удобной для восприятия и дальнейшей переработки. Мнемосхема должна предоставлять минимальное, но адекватное для контроля и управления количество переменных, не должна «перегружена» информацией для уточнения (второстепенные тренды), которую удобнее делать вложенной в виде всплывающих окон, вызываемых по требованию оператора;

максимальная линейность изображения процесса, т.е. желательно выделять основную линию процесса, подчиняясь правилу визуальности: чтение «слева направо» и «сверху вниз», минимальное применение параллельных контуров, что значительно упростит восприятие

- автономность – обособление друг от друга участков мнемосхемы, соответствующих автономно контролируемым и управляемым объектам и агрегатам. Эти обособленные участки должны быть четко отделены от других и иметь завершенную, легко запоминающуюся и отличающуюся от других структуру.

унификация – символы сходных объектов и процессов необходимо по возможности объединять и унифицировать;

- визуальный акцент к элементам контроля и управления – В первую очередь должны быть выделены (размерами, формой или цветом) элементы, существенные для оценки состояния, принятия решения и воздействия на управляемый объект (т.е. помогают быстро ориентироваться, определять и устранять отклонения и неисправности);

учет человеческого фактора – мнемосхема должна разрабатываться и совершенствоваться с учётом мнения эксплуатирующего персонала.

Для оценки мнемосхем используются:

– коэффициент информативности – отношение числа пассивных (статических) элементов и активных (динамических);

– коэффициент заполнения поля – отношение числа пассивных элементов мнемосхем к общему числу элементов мнемосхемы.

При проектировании мнемосхем предлагают обычно несколько вариантов. Окончательный выбирают путем эксперимента (имитируют на компьютере деятельность оператора с различными вариантами мнемосхемы). Критериями оценки служат время решения задач и число допущенных ошибок.

На рис. 2 приведены основные зоны мнемосхемы. При горизонтальной доминанте подачи информации выделяют следующие зоны: зона основной информации – отражает общую структуру технологического процесса. В ней расположены основные аппараты, трубопроводы, а также информационная нагрузка, сопровождающая технологический процесс.

зона дополнительной информации – здесь могут располагаться кнопки графиков трендов, отчетов, «пуск/останов» и т. д.

зона переключения – обусловлена невозможностью рационального отображения всей информации в одном окне («проклятие формата»).

С помощью средств области, возможно вызывать дополнительные окна на которых более подробно детализированы сигнализации, тренды (за день, месяц, год), отдельные участки процесса. Такой подход разгружает мнемосхему, даёт возможность получить нужную информацию о том объекте, которой заслуживает внимания в данный момент. Явное отличие при вертикальной доминанте зон – область 2 (дополнительной информации) расположена правее области 1 (основной информации). Это связанно в первую очередь с размерами описываемых объектов (отображаемый процесс по объёму небольшой), что позволяет отвести больше пространства для поясняющей информации. Данную компоновку областей возможно применять для всплывающих окон, т. е. детального рассмотрения отдельных участков технологического процесса.


Настоящий руководящий материал заменяет руководящий материал РМ 4-65-68 «Чертежи мнемонических схем на щитах и пультах управления. Указания по оформлению». В нем излагаются основные правила выполнения чертежей мнемосхем систем контроля и управления. В материале не рассматривается задача определения целесообразности применения мнемосхем, выявления необходимого вида мнемосхемы и другие задачи, решаемые проектировщиками при разработке функциональных схем систем контроля и управления.

Поскольку выполнение мнемосхем относится к одной из задач художественного конструирования, при решении которых необходим учет специфических требований технической эстетики и инженерной психологии, этот материал нельзя рассматривать как документ, жестко регламентирующий конструирование мнемосхем. Он является пособием для проектирования и его рекомендации необходимо учитывать совместно с другими требованиями, имеющими место при проектировании каждой конкретной системы контроля и управления.

1. ВВЕДЕНИЕ

В режиме неавтоматического управления объектом оператор следит за отклонениями параметров от заданных значений. Эти отклонения можно рассматривать как выходные величины, изменяющиеся вследствие изменения входных возмущающих воздействий. Воздействуя на причину отклонения, если это возможно, или на другую входную величину, изменение которой может компенсировать причину отклонения (возмущающее воздействие), оператор управляет объектом.


Из вышеизложенного следует, что оператору в процессе управления необходимо выявлять причинно-следственные взаимосвязи для выбора тех органов управления, которые позволят наиболее успешно ликвидировать нежелательные отклонения. Поскольку аналогичные отклонения одного и того же параметра могут вызываться разными причинами - возмущениями, воздействующими по разным каналам - входам, то выявление необходимых органов управления является сложной задачей. Одним из способов помощи оператору в выявлении необходимых ему причинно-следственных взаимосвязей является применение мнемонических схем.

Мнемосхемы являются графическими изображениями управляемых технологических объектов и, как правило, должны конструироваться с учетом требований технической эстетики и инженерной психологии. По этой причине в особо ответственных случаях, например, при проектировании мнемосхем для типовых объектов, в их разработке должны принимать участие специалисты по художественному конструированию (дизайнеры). С основами художественного конструирования и эргономики можно ознакомиться по следующей литературе:

1. Иоганек Т. и др. Техническая эстетика и культура изделий. М., 1969;

2. Сомов Ю.С. Композиция в технике. М., 1972;

3. Сидоров О.А. Физиологические факторы человека, определяющие компоновку поста управления машиной. М.,1962.


Приложенный к данному материалу пример мнемосхемы предназначен только для демонстраций применения рекомендаций данного материала при разработке мнемосхем. Типы и модификации комплектующих изделий, примененных в примере, не следует рассматривать как рекомендуемые. Их использование в примере не означает, что именно этим изделиям следует отдавать предпочтение при конструировании мнемосхем.

2. РОЛЬ МНЕМОСХЕМЫ В СИСТЕМЕ УПРАВЛЕНИЯ

Логика, лежащая в основе мероприятий, применяемых оператором для ликвидации анормальных отклонений хода технологического процесса, во многом аналогична логике работы мастера, ремонтирующего сложные электрические и другие промышленные аппараты и системы. Знание и понимание технологической схемы управляемого (или ремонтируемого) объекта является необходимой предпосылкой успешной работы как оператора, так и ремонтника. Именно по этой причине для объектов со сложной, труднозапоминаемой или оперативно изменяемой технологической схемой иногда бывает целесообразно размещать на щите (или пульте) управления условное упрощенное графическое изображение управляемого технологического объекта, то-есть применять мнемосхему.

3. НЕКОТОРЫЕ ПРАВИЛА КОНСТРУИРОВАНИЯ МНЕМОСХЕМ

О необходимости учета требований технической эстетики и инженерной психологии при разработке мнемосхем указывалось во введении данного материала. Из вышеизложенного следует, что, по крайней мере в сложных случаях, в создании мнемосхем должен участвовать специалист по художественному конструированию. В более простых случаях разработку мнемосхем достаточно выполнять, руководствуясь нижеследующими правилами, соблюдение которых, обычно, дает приемлемые результаты:


а) на мнемосхеме не должны показываться второстепенные элементы технологического процесса, отвлекающие внимание оператора и затрудняющие поиск нужных ему органов информации и управления;

б) мнемосхема должна давать оператору возможность быстрой общей оценки хода процесса. Поэтому на ней должны быть отражены все основные контуры управления, однако степень детализации не должна быть чрезмерной, затрудняющей оценку течения процесса;

в) изображение схемы процесса должно быть не только красивым, но и достаточно компактным, обозримым;

г) плотность размещения символов на поле мнемосхемы не должна быть чрезмерной. Она должна позволять вносить необходимые изменения в дальнейшем, если будет модифицирована технология производства (схема процесса);

д) направление основного технологического потока на мнемосхеме, как правило, должно приниматься в соответствии с общепринятым направлением письма и чтения: слева направо;


е) символы технологических аппаратов, относящиеся к одному и тому же производственному участку, должны изображаться на поле мнемосхемы вблизи друг друга общей группой. В пределах таких групп символы следует размещать приблизительно равномерно. Такие группы следует выделять обособлением их друг от друга;

ж) символы технологических аппаратов необходимо размещать на поле мнемосхемы таким образом, чтобы свести к минимуму число пересечений линий мнемосхемы;

з) линии технологических потоков между символами аппаратов следует проводить по кратчайшему пути, но соблюдая требования п. ж;

и) на линиях технологических потоков через удобные для оператора интервалы, как правило около аппаратов, следует размещать стрелки «направление потока»;

к) все линии технологических потоков, не оканчивающиеся символами, должны оканчиваться стрелкой «направление потока» и, если это необходимо, поясняющей надписью».


4. СИМВОЛЫ

Символы мнемосхем представляют собой упрощенные изображения технологических аппаратов и других устройств, показываемых на мнемосхеме. Символы технологических аппаратов, как правило, должны быть приблизительно подобны соответствующим аппаратам.

Соблюдение какого-либо одного для всей мнемосхемы масштабного соотношения между фактическими размерами технологических аппаратов и им соответствующих символов, как правило, нецелесообразно.

Размеры (величины) символов должны приниматься с учетом дистанции чтения мнемосхемы оператором. Символами больших размеров следует изображать более ответственные аппараты (если размеры поля мнемосхемы это позволяют), что также необходимо при размещении в символах органов контроля, сигнализации и управления.

Минимально допустимые размеры символов с точки зрения их различимости оператором с расстояния l , определяется следующей формулой:


где S - размер символа;

l - расстояние до символа по линии взора (в тех же единицах измерения, что и S );

a - угол зрения (угловой размер) в угловых минутах (").

Для символов несложной формы (внутри и снаружи контура символа имеются несложные детали) a = 21" ? 1" при нормальных условиях освещения.

Для символов сложной формы величину a следует принимать равной 35", для наименьших его деталей - ? = 6". Вышеприведенные цифры являются минимальными. Оптимальная величина символа, обеспечивающая наиболее быстрое считывание, соответствует? =40" Размеры символов применяемых при разработке чертежей мнемосхем, следует проверять на их различимость с заданной дистанции чтения по графику приложение 1, построенному по формуле (1).

Плотность символов на мнемосхеме, то есть расстояние между соседними символами в угловых величинах, должна быть не менее 40". Символы разных технологических линий должны разноситься на большие расстояния.

Накладные символы, как правило, следует изготавливать из листового дюралюминия толщиной 1 - 2 мм. По договоренности с заводом-изготовителем мнемосхем символы и линии могут быть выполнены и из других материалов, например из пластических масс.

Линии технологических потоков, а также импульсные и командные линии приборов и регуляторов, должны изображаться накладными полосами из дюралюминия. Ширину полос целесообразно принимать из ряда 4, 6, 8, 10 и 12 мм, причем линии технологических потоков должны быть не менее чем в два раза шире импульсных и командных линий. Линии тоньше (уже) 4 мм следует наносить краской (крашеные линии). По усмотрению проектировщика, некоторые символы могут приниматься по альбому «Символы элементов мнемосхем щитов и пультов управления» (обозначения 4.855.600 - 4.855.723), ГПИ ПМА, 1973.

Размеры шрифтов надписей на мнемосхемах должны приниматься с учетом расстояний, с которых будут читаться эти надписи. Принятый для надписи размер шрифта следует проверять на дальновидимость по приложению 2.

5. КРАСКИ И ЦВЕТА

Большое разнообразие технологических сред и их параметров затрудняет стандартизацию номенклатуры цветов и их оттенков для изображения технологических линий и аппаратов на мнемосхемах. Как правило, цвета технологических аппаратов и линий должны приблизительно совпадать с фактической окраской технологических агрегатов и трубопроводов по ГОСТ 14202-69 «Трубопроводы промышленных предприятий. Опознавательная окраска, предупреждающие знаки и маркировочные щитки».

Ограниченность номенклатуры цветов, предусмотренных этим стандартом, делает целесообразным применение предписываемых этим стандартам цветов, главным образом для изображения основных технологических сред.

Вспомогательные среды приходиться изображать с отступлением от предписаний этого стандарта, в соответствии с рекомендациями специалистов по эргономике и проектировщиков технологической части проектируемого объекта.

Как правило, трубопровод на схеме изображается двумя параллельными линиями (как продольное сечение трубопровода). Поскольку чертежи мнемосхем обычно не раскрашиваются, то, для изображения цветов на чертеже, каждому цвету, изображающему технологическую среду, присваивается число, обозначающее цвет (среду), которое должно указываться в разрывах осевых линий. Расстояние между соседними числами в линии должно быть не менее 50 мм, см. рис. 1a.

а) двухлинейное изображение, б) однолинейное изображение

Числа, обозначающие цвета, соответствующие технологическим средам, следует присваивать, начиная с главной, в порядке убывания важности ее для технологии автоматизируемого процесса.

Технологические линии мнемосхем шириной 4 мм и менее допускается изображать одной линией, см. рис. 1б.

Ввиду большого разнообразия цветов, применяемых в мнемосхемах, для их раскраски целесообразно использовать масляные художественные краски первой группы по СТУ 30-12186-61. Мнемосхемы, использующие цвета, предусмотренные номенклатурой красок в ГОСТ 6465-63 и ГОСТ 926-63, допустимо раскрашивать эмалями ПФ-115 и ПФ-133 и другими эмалями, пригодными для нанесения кистью.

6. ЧЕРТЕЖ МНЕМОСХЕМЫ

Как правило, чертеж мнемосхемы должен выполняться в виде отдельного чертежа в масштабе М1:2. Другие стандартные масштабы могут применяться лишь в обоснованных случаях.

Чертеж мнемосхемы должен содержать следующие сведения:

а) габаритные размеры мнемосхемы и место ее размещения на щите или пульте. Мнемосхемы должны размещаться в удобных для оператора зонах щита (пульта) управления. При наличии в мнемосхеме органов управления (ключей, кнопок), размещение мнемосхемы должно обеспечивать удобство пользования ими. В этом случае органы управления должны размещаться на мнемосхеме на высоте 550 - 1600 мм от уровня пола помещения управления;

б) масштабное изображение мнемосхемы, на котором закоординировано размещение основных символов технологических аппаратов. Координаты символов допускается не указывать, если об этом есть договоренность с заводом-изготовителем мнемосхемы.

При построении и размещении символов, содержащих встроенные в них сигнальные лампы, кнопки и т.п., необходимо учитывать конструктивные особенности встраиваемых изделий, возможность и удобство их монтажа и обслуживания;

в) цвета всех символов, линий технологических потоков, импульсных и командных линий приборов и регуляторов. Рекомендации см. раздел 5 данного материала;

г) типы, цвета и количество встраиваемых в символы ламп, кнопок и других изделий;

д) поясняющие надписи, стрелки «направление потока» и, если это необходимо, обозначения контролируемых точек измерения и параметров;

е) номера позиций аппаратуры мнемосхемы по заказной спецификации и ее обозначения по электрическим (пневматическим) схемам;

ж) размеры символов и материал, из которого они изготавливаются;

з) указания о красках для раскрашивания символов и линий. См. раздел 5 данного материала;

и) номера чертежей типовых конструкций;

к) указания о креплении символов и линий мнемосхемы. Как правило, выбор способа крепления символов следует предоставлять заводу-изготовителю, о чем делается указание на поле чертежа по типу: «Крепление символов мнемосхемы производить по нормалям завода-изготовителя».

Основная надпись, перечень составных частей, перечень аппаратуры и таблица условных обозначений должны выполняться по формам руководящего материала РМ 4-59-70.

Пример оформления чертежа мнемосхемы приложен к настоящему руководящему материалу.

Приложение 1

Минимальные размеры символов и их деталей в зависимости от дистанции чтения (см. раздел 4)

Приложение 2

Размер шрифта надписей в зависимости от дистанций чтения