Нефть, природный и попутный нефтяной газ и каменный уголь. Природные источники углеводородов

Японцы взялись за газовое топливо будущего? January 13th, 2013

Япония сегодня начала пробную добычу гидрата метана - разновидности природного газа, запасы которого, по оценке ряда экспертов, могут во многом решить энергетические проблемы страны. Специальное исследовательское судно "Тикю" /"Земля"/ приступило к бурению в Тихом океане в 70 км к югу от полуострова Ацуми вблизи города Нагоя на восточном побережье главного японского острова Хонсю.
В течение минувшего года японские специалисты провели ряд экспериментов по бурению тихоокеанского дна в поисках метаногидратов. В этот раз они намерены опробовать полномасштабную добычу энергоресурса и выделение из него газа метана. В случае успеха промышленную разработку месторождения у города Нагоя начнут в 2018 году.

Метаногидрат или гидрат метана - это соединение газа метана с водой, напоминающее по внешнему виду снег или рыхлый подтаявший лед. Этот ресурс широко распространен в природе - например, в зоне вечной мерзлоты. Под дном океана имеются большие запасы метаногидратов, осваивать которые до сих пор считалось невыгодным. Однако японские специалисты уверяют, что нашли относительно рентабельные технологии.


Запасы метаногидратов только в районе к югу от города Нагоя оцениваются в 1 трлн кубометров. Теоретически они могут полностью обеспечить потребности Японии в природном газе в течение 10 лет. Всего же, по прогнозам специалистов, залежей метаногидратов под океанским дном в прилегающих районах стране хватит примерно на 100 лет. Тем не менее стоимость этого топлива с учетом переработки, транспортировки и прочих расходов пока превышает рыночную цену на обычный природный газ.

В настоящее время Япония лишена энергетических ресурсов и полностью их импортирует. Токио, в частности, является крупнейшим в мире покупателем сжиженного природного газа. В последнее же время после аварии на АЭС "Фукусима-1" и постепенного отключения всех атомных станций потребности Японии в энергоресурсах возросли

Несмотря на развитие альтернативных источников энергии, ископаемые виды топлива по-прежнему сохраняют и, в обозримом будущем, будут сохранять главную роль в топливном балансе планеты. По прогнозам экспертов ExxonMobil, потребление энергоресурсов в ближайшие 30 лет на планете возрастет наполовину. Так как продуктивность известных месторождений углеводородов снижается, новые крупные месторождения открываются все реже, а использование угля наносит ущерб экологии. Однако скудеющие запасы обычных углеводородов можно компенсировать.
Те же эксперты ExxonMobil не склонны драматизировать ситуацию. Во-первых, технологии добычи нефти и газа развиваются. Сегодня в Мексиканском заливе, например, нефть добывают с глубины 2,5-3 км под поверхностью воды, такие глубины были немыслимы 15 лет назад. Во-вторых, развиваются технологии переработки сложных видов углеводородов (тяжелых и высокосернистых нефтей) и нефтяных суррогатов (битумы, нефтяные пески). Это позволяет возвращаться к традиционным районам добычи и возобновлять на них работу, а также начинать добычу в новых районах. Например, в Татарстане, при поддержке компании Shell, начинается добыча, так называемой "тяжелой нефти". В Кузбассе разрабатываются проекты по добыче метана из угольных пластов.


Третье направление поддержания уровня добычи углеводородов связано с поиском путей использования нетрадиционных их видов. Среди перспективных новых видов углеводородного сырья ученые выделяют гидрат метана, запасы которого на планете, по ориентировочным оценкам, составляют не менее 250 триллионов кубических метров (по энергетической ценности это в 2 раза больше ценности всех имеющихся на планете запасов нефти, угля и газа вместе взятых).

Гидрат метана - это супрамолекулярное соединение метана с водой. Ниже приведена модель гидрата метана на молекулярном уровне. Вокруг молекулы метана образуется решетка молекул воды (льда). Соединение устойчиво при низкой температуре и повышенном давлении. Например, гидрат метана стабилен при температуре 0 °C и давлении порядка 25 бар и выше. Такое давление имеет место на глубине океана около 250 м. При атмосферном давлении гидрат метана сохраняет устойчивость при температуре −80 °C.


Модель гидрата метана

Если гидрат метана нагревается, либо понижается давление, соединение распадается на воду и природный газ (метан). Из одного кубического метра гидрата метана при нормальном атмосферном давлении можно получить 164 кубических метра природного газа.

По оценкам Департамента Энергетики США, запасы гидрата метана на планете огромны. Однако, до сих пор это соединение практически не используется как энергетический ресурс. Департамент разработал и реализует целую программу (программа R&D) по поиску, оценке и коммерциализации добычи гидрата метана.


Холм из гидрата метана на морском дне

Неслучайно, что именно США готовы выделять значительные средства на разработку технологий добычи гидрата метана. Природный газ занимает в топливном балансе страны почти 23%. Большую часть природного газа США получают по газопроводам из Канады. В 2007 году потребление природного газа в стране составило 623 млрд. куб. м. К 2030 году оно может вырасти на 18-20%. Используя месторождения обычного природного газа в США, Канаде и на шельфе не возможно обеспечить такой уровень добычи.

Но тут как говорят есть другая проблема: вместе с газом поднимется огромная масса воды, от которой газ нужно будет очищать со всем возможным усердием. Нет таких двигателей, коротым было бы безразлично даже и 1% от массы топлива в виде хлоридов и прочих солей океана. Дизели умрут первыми, турбины выдержат немногим дольше. Разве что двигатель ВНЕШНЕГО сгорания Стирлинга?

Так что подавать в трубопровод газ прямо из придонного слоя - не прокатит никаким образом. Головников при очистке японцы хлебанут выше крыши. А потом за них возьмутся зелёные за загрязнения в толще океана его придонными слоями. Скорее всего струя песка и прочих примесей будет тянуться по течению и будет видна из космоса. Примерно как в Мраморном море струя из Босфора.

Очень мне этот проект и его перспективы напоминает неоднозначный и во многом спорный проект по сланцевому газу.


источники

Размышления о том, что ждет нас в будущем и раньше не давало покоя ученым. Сегодня на эту тему говорят все: от государственных руководителей до школьников. Глобальное потепление, таяние вековых льдов, демографические проблемы, клонирование человека, современные и будущие средства связи и передвижения, зависимость людей от энергоносителей… И все-таки одной из наиболее популярных сегодня тем является вопрос альтернативного топлива.

Топливо будущего - альтернатива природным ископаемым

Природные виды топлива в настоящее время являются нашим основным источником энергии. Углеводороды сжигают, чтобы разрушить молекулярные связи и освободить их энергию. Высокий уровень потребления ископаемых видов топлива приводит к значительному загрязнению природной среды, когда они сжигаются.
Мы живем в 21 веке, это время новых технологий, и многие ученые считают, что пришло время для создания альтернативного топлива будущего, которое способно заменить традиционное топливо и ликвидировать нашу зависимость от него. За последние 150 лет, использование углеводородов увеличило количество углекислого газа в атмосфере на 25%. Сжигание углеводородов приводит и к другим видам загрязнения, таким как смог, кислотные дожди и загрязнение воздуха. Этот тип загрязнения не только наносит вред окружающей среде, здоровью животных и людей, но, кроме того, приводит к войнам, так как ископаемые виды топлива являются не возобновляемыми ресурсами и, в конечном счете, закончатся. На данный момент важно найти новые решения и установить альтернативные источники топлива для будущего.

Пока одни ученые решают вопрос увеличения коэффициента нефтеотдачи продуктивных пластов, а другие ищут пути получения газообразного топлива из горючих сланцев, третьи пришли к выводу, что потребность в топливе можно удовлетворить обычным дедовским методом. Речь идет о "твердых нефтепродуктах", природном топливе - дровах. Идею "старую как мир" подхватили специалисты Стэнфордского университета в США, к ним присоединились и ученые университета штата Джорджия. Конечно, здесь нужны особые быстрорастущие сорта деревьев типа ольхи или платанов, которые дают до 40 т древесины с 1 га в год.

Платан - Platanus - могучее дерево с густой раскидистой кроной и толстым стволом - родоначальник обширного семейства платановых. Всео насчитывается в роду платанов около 10 видов. Высота платана достигает 60м, а длина окружности ствола - до 18м! Ствол платана ровной цилиндрической формы, кора зеленовато - серого цвета, отслаивающаяся. Листья платана пальчато-лопастные, с удлиненными черешками.

После вырубки деревьев платанов на земле остается листва, которую можно использовать для природного удобрения. Древесина платана измельчается в дробилках и подается в топку электростанций. Участок насаждения платанов в 125 км2 может обеспечить энергией город с населением 80 тыс. человек. На вырубленных площадях уже через 2-4 года из побегов вновь вырастут новые деревья платаны, пригодные для топлива. Ученые посчитали, что если 3 % территории России и Украины отвести под „энергетические плантации платанов" для выращивания природного топлива, то страны могли бы полностью удовлетворить свои потребности в топливе за счет дров.

Главным преимуществом использования "выращенного природного топлива", в противоположность "ископаемому топливу" (каменный уголь, природный газ и нефть) является то, что в процессе роста энергетический лес платанов адсорбирует углекислый газ, который позже высвобождается при его горении. Это значит, что при сжигании платанов в атмосферу выбрасывается такое количество СО2, которое поглощалось платаном во время его роста. При сжигании же ископаемого топлива, мы увеличиваем содержание СО2 в атмосфере, а это главная причина глобального потепления.

Новое топливо перспективно как ценный возобновляемый источник энергии и это будет более важным в будущем. Уже сегодня, например, крупнейшая в Европе электростанция на платане, находится в Зиммеринге (Австрия). Ее мощность 66 МВт,при ежегодном потреблении 190 тысяч тонн платана, выращиваемом здесь же в радиусе 100 км. А в Германии мощность энергетических лесов достигает 20 миллионов кубометров древесины в год.

Новые виды топлива

Американским сторонникам „дровенизации" бытовой теплоэнергетики вторят их коллеги из Европы. В Бельгии, например, в 1988г газета „Саар" напечатала статью, где назвала дрова природным топливом будущего, как альтернативу применения нефтепродуктов. Для этих же целей предлагается использовать и макулатуру. Там в магазинах уже продается ручной пресс для изготовления брикетов из макулатуры, не уступающие по своей калорийности буроугольным.

Также можно купить специальные экономичные печи, работающие по принципу газогенератора, конструкция которых препятствует уходу тепла через дымовую трубу. Дрова и брикеты макулатуры сгорают в этой печи очень медленно: вязанка - за 8 ч. При этом дрова сгорают полностью, отсутствует выделение в атмосферу золы и сажи. Отапливание помещений такими печами очень выгодно, ведь килограмм дров при сравнимой калорийности стоит в 10 раз меньше литра жидкого топлива, для хранения которого еще и требуются специальные емкости топлива .

В нимание другой группы американских ученых привлекли быстрорастущие бурые водоросли. Морские насаждения предлагается перерабатывать в газообразный метан с помощью бактерий. Также возможно получение нефтеподобные веществ путем нагревания. По расчетам, природная ферма в океане площадью насаждений 40 тыс. га сможет в будущем снабжать энергией город с населением 50 тыс. человек. Ученые из Франции предлагают использовать в качестве альтернативного топлива одноклеточные водоросли. Оказывается, эти микроскопические организмы выделяют углеводороды в процессе своей жизнедеятельности. Выращивая водоросли в специальных емкостях и снабжая их углекислым газом и минеральными солями, можно регулярно „собирать урожай углеводородов" и получать природное топливо.

Естественные природные „бензоколонки АЗС" обнаружены и в тропиках Южной Америки, на Филиппинах. Некоторые виды лиан и тропических деревьев содержат природное топливо - "солярку", которую даже не надо подвергать перегонке. Альтернативное топливо из лиан прекрасно горит в автомобильных моторах, давая менее токсичный выхлоп, чем бензин. Подходит для производства топ-лива и пальмовое масло, из которого сравнительно легко можно получать „солярку".

Но пока это все в области научной фантастики. Более реален проект получения синтетического топлива из древесного угля. Довольно простой метод разработан учеными США. Уголь измельчается, обрабатывается растворителем, и в полученную смесь добавляется водород. Из тонны угля получается почти 650 л синтетического топлива, из которой можно вырабатывать синтетический бензин.

Ученые США всерьез занялись подземной газификацией угольных пластов. Методом пиролиза из него получают 40 % метанового газа, 45 % кокса и 3 % жидкого топлива. Специалистами разработан совсем неожиданный способ получения топлива будущего... из мусора. Из отходов жизнедеятельности человека предварительно извлекают магнитные и немагнитные металлы, которые вдальнейшем отправляют в переплавку. Новая технология переработки отходов стекла позволяет получить из осколков стекло более дешевое и более высокого качества, чем исходное сырье. Остатки мусора перерабатываются в кокс, метановый газ и жидкое топливо. „Мусорные" нефтепродукты испытывали на опытных установках - горят прекрасно. Из тонны мусора таким способом „добывают" от 6 до 20 долларов. В 1976 - 1977 гг. в Сан-Диего вступил в строй специальный завод для переработки мусора.

Однако, над подобной проблемой успешно работают и в Великобритании. Здесь разработана и в натоящее время работает установка переработки мусора, в которой под действием высоких температур при сгорании вдуваемого кислорода из мусора (пластмассовые упаковки и бутылки, пищевые отбросы, обрывки газет, тряпки и т.д.) получают синтетические нефтепродукты и метановый газ с водородом. Жидкое синтетическое топливо и газ предполагают хранение в резервуарах и использовать частично для работы дизеля, а частично для переплавки битого стекла, из которого можно получать строительные блоки. В будущем планируется переработка мусора в старых доменных печах. Это даст высокую производительность, экономию времени и средств на постройку новых мусоросжигающих заводов. Как показали эксперименты, в дело пойдет и остающийся шлак - он пригоден для замены гравия при выполнении бетонных работ .

А вот еще два способа получения синтетического бензина. Французский инженер А. Ротлисберже получил альтернативный бензин из сухих стеблей кукурузы. Автор утверждает, что новое топливо будущего с октановым числом 98 вполне можно добывать из соломы, опилок, ботвы овощей и других отходов, содержащих целлюлозные волокна. Под нажимом правительственных структур изобретатель засекретил технологию синтеза нового топлива, но известно, что качество нового бензина во многом зависит от сложных стабилизирующих добавок, вводимых в спирты и изопропиниловые эфиры, получаемые из целлюлозы. Новое альтернативное топливо не детонирует, сгорает без дыма и запахов. Его можно смешивать в любых пропорциях с обычным бензином. При этом в будущем, конструктивных изменений в двигателях не требуется. Франция намерена со временем довести производство нового бензина до 20 млн.т в год.

Еще один изобретатель искусственного бензина живет в Швейцарии. Исходным материалом служит щепа, кукурузная шелуха, полиэтиленовые пакеты. Да вот беда, „бензин будущего" пахнет самогоном. Изобретателю приходится платить 8 % налога как за изготовление алкогольных напитков. Тем не менее 1 л искусственного „бензина будущего" стоит в 2 раза дешевле настоящего, а автомобиль работает исправно, как новый.

Разработки изобретателей не ограничиваются только искусственным бензином, предлагаются оригинальные методы получения углеводородного газа для бытовых целей. Один из которых разработан в Германии. В качестве нового источника альтернативной энергии будущего выступает свалка мусора в пригородном местечке Шверборн. При заполнении свалки под ней заложили сеть газовых колодцев и трубопроводов. Оказывается, 1 кг мусора дает до 200 л газа, из которого 100 литров - метан. Пока на свалке "добывают" в час 40 м3 газа.
Новое топливо отапливает производственные помещения. Планируется сооружение теплоцентрали на альтернативном топливе для отопления поселка. По расчетам, затраты на получение альтернативного топлива окупятся за 3,5 года.

Второй способ еще более неожиданный. С предложением выступили власти г. Оттапалам в штате Керала (Индия). Рецепт нового топлива следующий: Колодец заполняется коровьим навозом и герметично закрывается. Образующийся при брожении газ по подсоединенным трубам отводится к газовым плитам в домах. Такая биогазовая установка полностью удовлетворяет потребность семьи в биоэнергии для домашнего пользования. Сегодня в Индии разработаны и применяются 53 модели биогазовых систем. Ими эффективно пользуются около 3,5 млн. семей. Правительство страны активно поддерживает распространение биогазовых установок. Уже сейчас за счет этого экономится около 1,2 млрд. рупий в год.

Солнечная энергия - технология будущего

В начале статьи мы упоминали различные новые технологии получения энергии. Фотоэлектрические системы (или солнечные батареи) – это еще одна «технология будущего», применяющаяся уже сегодня.

Сейчас многие используют солнечные батареи в качестве основного или резервного источника электроэнергии для жилых домов и офисных зданий. Если вы недавно были на море, то могли заметить, что в навигационных буях также применяют энергию солнечных батарей. Уже давно они «взяты на вооружение» военными: во время операции «Буря в пустыне» полевые радиостанции были оснащены облегченными солнечными батареями ECD.

В будущем масштабы использования солнечных батарей будут только расти. Недавно компания ECD, в сотрудничестве с Texaco, предложила технологию использования энергии солнца для электроснабжения нефтедобывающего оборудования на нефтяном месторождении площадью двести гектаров в Бейкерсфилде (штат Калифорния). Ранее для добычи трех баррелей нефти один сжигали в парогенераторе. Использование солнечной энергии не только приведет к снижению расхода невосполнимых ресурсов, но и уменьшит вредные выбросы и шум.

Природный газ не имеет цвета и запаха образует самостоятельные скопления в виде газовых месторождений температура самовозгорания: 650 °C у газа наиболее простая транспортировка – по трубопроводам. Это разгружает транспорт и удешевляет сам газ. Мировые запасы газа сосредоточены в России, Иране, США, Алжире, Канаде, Мексике, Норвегии. по запасам газа Россия на 1 месте Залежи газа (как и нефти) располагаются в основном на глубинах, превышающих 3 км, где первичное органическое вещество при температуре 100 °С и высоком давлении преобразуется в углеводороды.


Азот и др.газы Пропан Этан Пентан Бутан Метан основной компонент CH % C 2 H 6 0,5-4% C 3 H 8 0,2-1,5% C 4 H 10 0,1-1% C 5 H % N… 2-13% «сухой газ»


Как топливо в промышленности и быту сырье для химпрома теплота сгорания выше, чем у других видов топлива(при сжигании 1 м 3 газа выделяется до кДж) не оставляет золы экологически чистый вид топлива Получение синтетических волокон, каучука, пластмасс, спиртов, жиров, азотных удобрений, аммиака, ацетилена, взрывчатых веществ, медикаментов и т.д.


Тоже природный газ, растворен в нефти и расположен над нефтью. На 1 т нефти попутно добывают 100–150 м 3 газа При извлечении нефти на поверхность газ из-за резкого падения давления отделяется от нее. CH 4 40% Попутный газ содержит алканы, в молекулах которых от 1 до 6 атомов C C 2 H 6 20% C 3 H 8 20% C 4 H 10 20% C 5 H 12 мало C 6 H 14 мало Попутный газ – «жирный газ», т.к. кроме метана (сухой газ) и его гомологов содержатся высшие углеводороды.


Смесь пентана с гексаном Использование попутного газа шире, чем природного, т.к. с CH 4 в нем содержится много C 2 H 6, C 3 H 8, C 4 H 10, C 5 H 12 Газовый бензин используют как добавку к бензину. Смесь пропана и бутана в сжиженном виде используют как топливо в быту и в автомобилях. Разделяют попутный газ на этан, пропан и т.д., из которых потом получают непредельные углеводороды.


Нефть маслянистая горючая жидкость с характерным запахом от светло-бурого до черного цвета немного легче воды не растворяется в воде нет определенной t кипения Нефть, как и газ, не образует отдельных пластов, она заполняет пустоты в породах: поры между песчинками, трещины Залежи нефти находятся в недрах земли на разной глубине. Нефть находится под давлением и поднимается по скважине на поверхность земли.


2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам" title="Cернистая(от 0,5 до 2% S) Нефть - смесь различных углеводородов (150) с примесями других веществ Малосернистая(до 0,5% S) Высокосернистая (> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам" class="link_thumb"> 9 Cернистая(от 0,5 до 2% S) Нефть - смесь различных углеводородов (150) с примесями других веществ Малосернистая(до 0,5% S) Высокосернистая (> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородами Грозненская и ферганская: больше предельных углеводородов Пермская: содержит ароматические углеводороды Сера приносит немало хлопот нефтяникам, вызывая коррозию металлов. 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам"> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородами Грозненская и ферганская: больше предельных углеводородов Пермская: содержит ароматические углеводороды Сера приносит немало хлопот нефтяникам, вызывая коррозию металлов."> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам" title="Cернистая(от 0,5 до 2% S) Нефть - смесь различных углеводородов (150) с примесями других веществ Малосернистая(до 0,5% S) Высокосернистая (> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам"> title="Cернистая(от 0,5 до 2% S) Нефть - смесь различных углеводородов (150) с примесями других веществ Малосернистая(до 0,5% S) Высокосернистая (> 2% S) Состав нефти зависти от месторождения. Бакинская: богата циклоалканами, бедна предельными углеводородам">


Легкая тяжелая извлекают насосами, фонтанным способом. Из них делают в основном бензин и керосин иногда добывают шахтным способом (Яремское месторождение в Республике Коми) Перерабатывают в битум, мазут, масла, Из некоторых сортов нефти выделяют парафин. Смешивая твердые и жидкие углеводороды, получают вазелин. Легкая нефть примерно на два процента меньше углерода, чем тяжелая, зато большее количество водорода и кислорода.


Нефть C2H4C2H4 Бутадиеновый каучук H 2 C-CH 2 | HO OH Антифризы C 2 H 5 OH Растворители Волокна лавсана Растворители Бутадиен- стирольный каучук H 2 C-CH-CH 2 | | | HO OH OH Антифризы Лекарственные мази Мази для парфюмерии H 3 C-CH=CH 2 и др.непред. углеводороды Растворители Горючее для двигаелей внутреннего сгорания Взрывчатые вещества CH 2 =CH | CH 2 =CH


Переработка фракций после первичного процесса 1 Крекинг т.е. расщепление длинной углеводородной цепи на углеводороды с меньшим числом атомов углерода 2 Пиролиз т.е. разложение орг. веществ без доступа воздуха при высокой температуре 3 Гидроочистка т.е. обработка водородом при нагревании и давлении в присутствии катализатора Перегонка нефти (ректификация) т.е разделение на фракции Недостаток: малый выход бензина для увеличения выхода бензина и улучшения его качества получение ароматич.углеводородов (бензол, толуол), непред. газообразных углеводородов(этилена, ацетилена) чтобы удалить сернистые и азотосодержащие соед.






Как топливо в промышленности и быту технологическое и химическое сырье Делают искусственный графит. Золу используют в производстве строительных материалов, керамического и огнеупорного сырья, глинозема. Крупными каменноугольными бассейнами являются: Тунгусский, Ленский, Таймырский в России, Аппалачский в США, Карагандинский в Казахстане Одним из основных способов получения углеводородов из каменного угля является коксование или сухая перегонка



Для промышленности важны три источника сырья: нефть, газ и каменный уголь .

Нефть.

Нефть - это темная, маслянистая жидкость, нерастворимая в воде , которая содержит разветвленные и неразветвленные алканы , циклоалканы. Состав зависит от месторождения.

Нефть является основным материалом для получения органических соединений методом сухой перегонки (пиролизом, карбонизацией). Основные продукты - ароматические углеводороды и их производные. Получают в основном красители, синтетические жиры и масла .

С ростом значения нефти совершенствовались способы химической переработки. В настоящее время около 90% синтетических органических соединений получены из нефти и ее производных.

Лабораторные и промышленные методы получения нефти.

Между лабораторным и промышленным способами получения нефти имеется ряд существенных различий, а именно:

  • цена (в лаборатории используются малые количества реактивов, когда как в промышленности необходимы большие объемы. Поэтому в лаборатории могут использоваться дорогие и редкие соединения, а в промышленности нужно обходиться наименьшими затратами. Или использование вредных ядовитых веществ в лаборатории вполне допустимо из-за наличия вытяжных шкафов, то в промышленных масштабах это крайне опасно.);
  • тепло. В промышленности подвод тепла весьма дорог для реакций, проводимых при умеренно повышенных и нармальных температурах, когда как для лаборатории такие синтезы легко осуществимы;
  • чистота смеси. В лаборатории обычно работают с чистыми веществами, когда в промышленности, в основном, со смесями;
  • круговорот веществ. Если в промышленности можно смеси разделять различными химическими процессами (перегонкой, фильтрованием, непрерывными процессами), то для лаборатории это нерентабельно. В промышленности имеет место цикличность процессов, когда непрореагировавшее вещество можно снова ввести в цикл процесса переработки, а в лаборатории такое осуществляется с большим трудом.

Переработка нефти.

В промышленности используют дробную перегонку «сырой нефти», в результате чего последняя разделяется на несколько фракций, которые имеют различные температуры кипения:

Бензиновая фракция состоит из петролейного эфира и экстракционного бензина. Состав фракции варьируется от С 6 - С 9 . Вся фракция является весомым нефтепродуктом, т.к. служит топливом для двигателей внутреннего сгорания.

Керосин (С 9 -С 16) используется в отопительных приборах, а также является топливом для самолетов и турбинных двигателей.

Газойль (дизельное топливо) служит топливом для дизельных двигателей.

Смазочные масла (С 20 - С 50) используются в качестве смозочных материлов.

Мазут (остаток) - используют как топливо, его перегоняют в результате чего получают высококипящую углеводородную фракцию.

Химические превращения углеводородов, содержащихся в нефти.

Значимость топлива в современном мире значительно возрастает. Именно по этой причине нашли самый оптимальный способ получения бензина из высококипящих фракций - крекинг - нагрев высших алканов без доступа воздуха, вследствие чего происходит распад на низшие и высшие углеводороды:

Если крекинг протекает без использования катализатора, то он называется термическим. Если же в качестве катализатора используют SiO 2 или Al 2 O 3 , то это каталитический крекинг. Продуктом таких процессов является этан и пропен, которые стали важным сырьем для промышлености.

Для совершенствования качеств бензина проводят реформинг и алкилирование.

Риформинг (изомеризация) - процесс, в котором неразветвленные алканы при нагревании с катализатором превращаются в более разветвленные с большим октановым числом. Например,

Алкилирование - процесс, при котором смесь алканов и алкенов превращается в разветвлённые соединения с большим октановым числом, при использовании в качестве катализатора - кислоты :

Природный газ.

Природный газ - совокупнсть газов, состав которых зависит от месторождения. В основном, это смесь метана, этана и пропана, но еще могут встретиться небольшие количества азота, высших алканов, углерода , гелия (редко).

Природный газ является промышленным топливом, важнейшим соединением служит синтез-газ (смесь оксида углерода и водорода):

Его можно получить воздействием раскаленного кокса с водяным паром, соединение, которое получается в данном процессе, носит название водяной газ :

Именно из оксида углерода и водорода получают метанол:

Реакция протекает под давлением в присутствие катализаторов.

Каменный уголь.

Каменный уголь служит сырьем для получения ароматических углеводородов. Схематически процесс можно представить так:

Аналогично можно получить толуол.

При сухой перегонке при высоких температурах получают смесь твердых, жидких и газообразных продуктов.

Газофазным продуктом является коксовый газ , основным компонентом которого является водород и метан.

Жидкий продукт представляет собой деготь , из которого выделяют большое количество фенола, крезола, нафталина, тиофена, антрацена.

Твердым продуктом является кокс .

1. Природные источники углеводородов: газ, нефть, каменный уголь. Их переработка и практическое применение.

Основными природными источниками углеводородов являются нефть, природный и попутный нефтяной газы и каменный уголь.

Природный и попутный нефтяной газы.

Природный газ – смесь газов, основным компонентом которой является метан, остальное приходится на долю этана, пропана, Бутана, и небольшого количества примесей – азота, оксида углерода (IV), сероводорода и паров воды. 90% его расходуется в качестве топлива, остальные 10% используют как сырье для химической промышленности: получение водорода, этилена, ацетилена, сажи, различный пластмасс, медикаментов и др.

Попутный нефтяной газ – это тоже природный газ, но он встречается вместе с нефтью – находится над нефтью или растворен в ней под давлением. Попутный газ содержит 30 – 50% метана, остальная часть приходится на его гомологи: этан, пропан, бутан и другие углеводороды. Кроме того, в нем присутствуют те же примеси, что и в природном газе.

Три фракции попутного газа:

1. Газовый бензин; его добавляют к бензину для улучшения запуска двигателя;

2. Пропан-бутановая смесь; применяется как бытовое топливо;

3. Сухой газ; используют для получения ацителена, водорода, этилена и других веществ, из которых в свою очередь производят каучуки, пластмассы, спирты, органические кислоты и т.д.

Нефть.

Нефть – маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным запахом. Она легче воды и в ней практически нерастворима. Нефть представляет собой смесь примерно 150 углеводородов с примесями других веществ, поэтому у нее нет определенной температуры кипения.

90% добываемой нефти используется как сырье для производства различных видов топлива и смазочных материалов. В то же время нефть – ценное сырье для химической промышленности.

Нефть, добываемую из земных недр, называю сырой. В сыром виде нефть не применяют, ее подвергают переработке. Сырую нефть очищают от газов, воды и механических примесей, а затем подвергают фракционной перегонке.

Перегонка – процесс разделения смесей на отдельные компоненты, или фракции, на основании различия их температур кипения.

При перегонке нефти выделяют несколько фракций нефтепродуктов:

1. Газовая фракция (tкип = 40°С) содержит нормальные и разветвленные алканы СН4 – С4Н10;

2. Бензиновая фракция (tкип = 40 - 200°С) содержит углеводороды С 5 Н 12 – С 11 Н 24 ; при повторной перегонке из смеси выделяют легкие нефтепродукты, кипящие в более низких интервалах температур: петролейный эфир, авиационный и автомобильный бензин;

3. Лигроиновая фракция (тяжелый бензин, tкип = 150 - 250°С), содеожит углеводороды состава С 8 Н 18 – С 14 Н 30 , применяют в качестве горючего для тракторов, тепловозов, грузовых автомобилей;



4. Керосиновая фракция (tкип = 180 - 300°С) включает углеводороды состава С 12 Н 26 - С 18 Н 38 ; ее используют в качестве горючего для реактивных самолетов, ракет;

5. Газойль (tкип = 270 - 350°С) используют как дизельное топливо и в больших масштабах подвергается крекингу.

После отгонки фракций остается темная вязкая жидкость – мазут. Из мазута выделяют соляровые масла, вазелин, парафин. Остаток от перегонки мазута – гудрон, его применяют при производстве материалов для дорожного строительства.

Вторичная переработка нефти основана на химических процессах:

1. Крекинг – расщепление крупных молекул углеводородов на более мелкие. Различают термический и каталитический крекинг, который более распространен в настоящее время.

2. Риформинг (ароматизация) - это превращение алканов и циклоалканов в ароматические соединения. Этот процесс осуществляют путем нагревания бензина при повышенном давлении в присутствии катализатора. Риформинг применяют для получения из бензиновых фракций ароматических углеводородов.

3. Пиролиз нефтепродуктов проводят нагреванием нефтепродуктов до температуры 650 - 800°С, основными продуктами реакции являются непредельные газообразные и ароматические углеводороды.

Нефть – сырье для производства не только топлива, но и многих органических веществ.

Каменный уголь.

Каменный уголь так же является источником энергии и ценным химическим сырьем. В состав каменного угля в основном органические вещества, а также вода, минеральные вещества, при сжигании образующие золу.

Одним из видов переработки каменного угля является коксование – это процесс нагревания угля до температуры 1000°С без доступа воздуха. Коксование угля проводят в коксовых печах. Кокс состоит из практически чистого углерода. Его используют в качестве восстановителя при доменом производстве чугуна на металлургических заводах.

Летучие вещества при конденсации каменноугльную смолу (содержит много различных органических веществ, из них большая часть – ароматические), аммиачную воду (содержит аммиак, соли аммония) и коксовый газ (содержит аммиак, бензол, водород, метан, оксид углерода (II), этилен, азот и другие вещества).